System Composer™
User's Guide

7

MATLAB&SIMULINK

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ User's Guide
© COPYRIGHT 2019-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2019 Online only New for Version 1.0 (Release 2019a)

September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)

March 2022 Online only Revised for Version 2.2 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Architecture Model Editing

1]

2|

Compose Architecture Visually 1-2
Create Architecture Model i, 1-2
COmMPONENES . ..ttt e e 1-5
POrtS o 1-9
CONNECHIONS . . v vttt 1-12

Decompose and Reuse Components 1-17
Decompose Component, 1-17
Create Reference Architecture 1-18
Use Reference Architecture 1-20
Remove Reference Architecture 1-20
Create Variants i e 1-21
Add Variant Choices i 1-22
Create Software Architecture from Component 1-23

Build Architecture Models Programmatically 1-24

Modeling System Architecture of Small UAV 1-32

Requirements

Link and Trace Requirements 2-2

Manage Requirements 2-8
Mobile Robot Architecture Model 2-8
Manage Requirements i 2-8
Trace Requirementsttt 2-9
Use Requirements Traceability Diagram 2-10
Link Requirements, 2-11
Verify and Validate Requirements Using Test Harnesses 2-13

Update Reference Requirement Links from Imported File 2-15

Interface Management

3|

Define Port Interfaces Between Components 3-2

iii

iv

Contents

Create Interfaces 3-5

Mobile Robot Architecture Model 3-5
Open Interface Editor 3-5
Create Composite Data Interfaces 3-6
Create Value Types as Interfaceso 3-7
Nest InterfacestoReuse Data 3-8
Assign InterfacestoPorts 3-10
Mobile Robot Architecture Model with Interfaces 3-10
Associate Ports with Interfaces in Property Inspector 3-10
Define Owned Interfaces LocaltoPorts 3-11
Select Multiple Ports and Assign Data Interface 3-13
Specify Source Element or Destination Element for Ports 3-14
Interface Adapter e 3-16
Manage Interfaces with Data Dictionaries 3-20
Mobile Robot Architecture Model with Interfaces 3-20
Save, Link, and Delete Interfaces 3-20
Reference Data Dictionaries 3-23
Add Referenced Data Dictionaries 3-23
Use Referenced Data Dictionaries for Projects with Multiple Models 3-24

Define Architectural Properties

4

Define Profiles and Stereotypes 4-2
Create a Profile and Add Stereotypes 4-2
Add Properties with Stereotypes 4-3
Define Default Stereotypest 4-5
Use Stereotype-Based Styling, 4-7
Use Stereotypesand Profiles 4-10
Import Profiles 4-10
Apply Stereotypes e 4-12
Remove Stereotypes i e 4-19
Extend Stereotypes 4-19
Simulate Mobile Robot with System Composer Workflow 4-22
Organize and Link Requirements 4-24
Link Stakeholder Requirements to System Requirements 4-24
Design Architecture Models 4-27
Design, Specify, and Allocate Architecture Models 4-27
Define Stereotypes and Perform Analysis 4-34
Define Stereotypes and Perform Analysis 4-34
Simulate Architectural Behavior 4-43
Simulate Architectural Behavior 4-43

Use Simulink Models with System Composer

Describe Component Behavior Using Simulink 5-2
Create Simulink Behavior with Robot Arm Model 5-2
Create Referenced Simulink Behavior Model 5-4
Create Simulink Subsystem Behavior Using Subsystem Component 5-6
Link to Existing Simulink Behavior Model 5-9
Access Model Arguments as Parameters on Reference Components 5-9
Create Simulink Behavior from Template for Component 5-10

Use Parameters to Store Instance Values with Components 5-13

Extract Architecture of Simulink Model Using System Compeoser 5-17

Describe Component Behavior Using Stateflow Charts 5-23
Add State Chart Behavior to Component 5-23
Remove Stateflow Chart Behavior from Component 5-26

Extract Architecture from Simulink Model 5-28

Describe System Behavior Using Sequence Diagrams 5-32
Traffic Light Example for Sequence Diagrams 5-32

Author Sequence Diagram for Traffic Light Example 5-38
Traffic Light Example i 5-39
Add Lifelines and MesSageso vin ettt 5-40
Add Fragments and Operandsc.ciiviiiinnnennnn. 5-45

Use Sequence Diagrams with Architecture Models 5-51
Traffic Light Example with Hierarchy for Sequence Diagrams 5-51
Create Sequence Diagramttt 5-53
Add Child Lifelines to Sequence Diagram 5-55
Create Sequence Diagram Gates 5-57
Co-Create Componentscu i 5-58
Synchronize Sequence Diagram and Model 5-59
Create Messages in Sequence Diagramcvvvun... 5-59
Modify Sequence Diagram Using Model Browser 5-62
Create Sequence Diagram from View 5-63

Implement Sequence Diagram Fragments 5-65
Sequence Diagram Fragments 5-65
Fragment Semantics i 5-66

Describe Component Behavior Using Simscape 5-75
Architecture Model with Simscape Behavior fora DC Motor 5-75
Define Physical Ports on Component 5-76
Specify Physical InterfacesonPorts 5-76
Create Simulink Subsystem Component 5-77
Describe Component Behavior Using Simscape 5-78

Synchronize Sequence Diagrams and Architecture Models 5-81

vi

Contents

Allocate Architecture Models

6/

Create and Manage Allocations 6-2
Allocate Architectures in Tire Pressure Monitoring System 6-5
Systems Engineering Approach for SoC Applications 6-10

Analyze Architecture Model

7

Analyze Architecture 7-2
Set Properties for Analysis 7-2
Create a Model Instance for Analysis 7-4
Write Analysis Function 7-6
Run Analysis Function 7-7

Analysis Function Constructs 7-9
Roll-Up Analysis for Quadcopter Design 7-9
Class-Based Analysis for Battery Sizing 7-10
Allocation-Based Analysis for Tire Pressure Monitoring 7-11
Remaining Useful Life Analysis for Mobile Robot Design 7-11
Variant Analysis for Insulin Infusion Pump Design 7-12

Battery Sizing and Automotive Electrical System Analysis 7-14

Calculate Endurance Using Quadcopter Architectural Design 7-16

Design Insulin Infusion Pump Using Model-Based Systems Engineering

8|

Author Software Architectures 8-2
Create New Software Architecture Model 8-2
Build a Simple Software Architecture Model 8-3
Import and Export Software Architectures 8-5
Create Software Architecture from Architecture Model Component 8-5

Simulate and Deploy Software Architectures 8-8
Modeling the Software Architecture of a Throttle Position Control System
... 8-14
Class Diagram View of Software Architectures 8-20
Software Architecture with Class Diagram View 8-20

Interact with Class Diagram View, 8-20

Client-Server Interfaces in the Class Diagram View 8-21
Author and Extend Functions for Software Architectures 8-24
Author and Visualize Functions Using Functions Editor 8-24
Author Functions Programmatically 8-28
Implement Behaviors for Functions in the Architecture Level 8-29
Apply Stereotypes to Functions of Software Architectures 8-29
Import and Export Functions of Software Architectures 8-30
Merge Message Lines Using Adapter Block 8-32
Authoring Functions for Software Components of an Adaptive Cruise
Control e 8-34
Author Service Interfaces for Client-Server Communication 8-41
Service-Oriented Sensor Modeling 8-44

Create Custom Views

9

Create Spotlight Views 9-2
Mobile Robot Architecture Model with Properties 9-2
Create Spotlight Views from Components 9-2

Create Architecture Views Interactively 9-5

Create Filtered Views with Component Filters and Port Filters 9-5

Add Group By Criteria to Filtered Views, 9-9

Interactively Add and Remove Elements from Views 9-10

Add or Remove Requirements Links from Views 9-11

Add Custom Clauses to Component Filters and Port Filters 9-13

Create Architectural Views Programmatically 9-15
Create Architecture Views in System Composer with Keyless Entry System

... 9-15

Find Elements in Model Using Queries 9-17

Display Component Hierarchy and Architecture Hierarchy Using Views

... 9-21

Robot Computer Systems Architecture 9-21

Switch Between Component Diagram View and Hierarchy Views 9-22

Modeling System Architecture of Keyless Entry System 9-25

viii

Contents

Manage Architecture Models

10|

Organize System Composer Files in Projects 10-2
Use Projects to Organize Filesand Folders 10-2

Compare Model Differences Using System Composer Comparison Tool

Import and Export Architecture Models

11|

Import and Export Architectures 11-2
Import and Export Architecture Models 11-5
Define Basic Architecture 11-5
Import Basic Architecture 11-6
Extend Basic Architecture Import 11-7
Export Architecture 11-11
Import System Composer Architecture Using ModelBuilder 11-13

Architecture Model Editing

* “Compose Architecture Visually” on page 1-2

* “Decompose and Reuse Components” on page 1-17

* “Build Architecture Models Programmatically” on page 1-24
* “Modeling System Architecture of Small UAV” on page 1-32

1 Architecture Model Editing

Compose Architecture Visually

1-2

In this section...

“Create Architecture Model” on page 1-2
“Components” on page 1-5
“Ports” on page 1-9

“Connections” on page 1-12

You can create and edit visual diagrams to represent system architecture in System Composer™. Use
architectural elements including components, ports, and connections in the system composition.
Model hierarchy in architecture by decomposing components. Navigate through the hierarchy.

With MATLAB® code and the functions importModel and exportModel, you can import external
architecture descriptions into System Composer. For more information, see “Import and Export
Architecture Models” on page 11-5.

Alternatively, you can use MATLAB programming to create and customize the various architectural
elements. For details, see “Build Architecture Models Programmatically” on page 1-24.

Create Architecture Model

A System Composer architecture represents a system of components and how they interface with
each other structurally and behaviorally. You can represent specific architectures using alternate
views.

Different types of architectures describe different aspects of systems:

» Functional architecture describes the flow of data in a system.
* Logical architecture describes the intended operation of a system.
* Physical architecture describes the platform or hardware in a system.

A System Composer model is the file that contains architectural information, including components,
ports, connectors, interfaces, and behaviors.

An architecture model includes a top-level architecture that holds the composition of the system. This
top-level architecture also allows definition of interfaces of this system with other systems.

Start with a blank architecture model to model the physical and logical architecture of a system. Use
one of these three methods to create an architecture model:

e At the MATLAB Command Window, enter:
systemcomposer

Select Architecture Model.

Compose Architecture Visually

Examples

™ Cpen

Recent
> Statefiow
Projects

} w System Composer
g From Source Control =

Learn

Create Model

(*p Simulink Onramp
['ﬁ Statefiow Onramp ,E-'j

& Control Design Onramp with Simulink Architecture Modal o

Software Architecture Model

> LAY Toolbox Support Package for BX4 Autopilols

» Vehicle Dynamics Blockset
» Vision HDL Toolbox

> Wireless HDL Toolbox

* From a Simulink® model or a System Composer architecture model. On the Simulation tab, select

New "u" and then select Architecture Iﬁ%ﬁ

1-3

Architecture Model Editing

SIMULATION MODELING FORMAT
Find « = & = Stop Time
@ < G 5 T B B & v
[t =
L% Compare - - orma -
Maodel - \nter‘face Profile Apply Architecture Analysis Allocation | Update -
Advisor + i Environment = Editor Editor v Stereotypes Views = Model v Editor Modsl v .
MANAGE DESIGN PROFILES COMPOMENT VIEWS COMPILE SIMULATE
untitled B
® | untitled hd
& | untitled
O
» |
Interfaces
Ready 100% VariableStepAuto

Jojpadsur Avadoid | p|

e At the MATLAB Command Window, enter:

archModel = systemcomposer.createModel("ModelName");
systemcomposer.openModel (archModel) ;

where ModelName is the name of the new model.

Save the architecture model. On the Simulation tab, select Save E The architecture model is
saved as an SLX file.

The architecture model includes a top-level architecture that holds the composition of the system.
This top-level architecture also allows definition of interfaces of this system with other systems. The
composition represents a structured parts list — a hierarchy of components with their interfaces and
interconnections. Edit the composition in the Composition Editor.

Compose Architecture Visually

SIMULATION MODELING
(L Find ~ I = % = Stop Time | 100 -~
@ = 2 | B B B 5 ® B &2 & (O]
L& Compare . e S A G e . ol M
Model B Interface | Importbase Import Profile Apply SaveAs Create Architecture Analysis Allocation Update ma Run
Advisor ~ i Environment ~ Editar workspace MAT-file Editor v Stereotypes | Architect.. S Views = Model v Editor Model = | 6 Fast Restart
MANAGE DESIGN PROFILES VIEWS COMPILE SIMULATE
Model Browser = @ ex_RobotArch_props @F Property Inspector [OF
v ST @ | ex_Robotarch_props P | | Component
[motion
v [sensors & Architecture Info
| e ex_RobotArch_props
[pataprocessing] v Main
5 crs = Name Sensors
B gyropata i Stereotype add -
~ [Trajectory Planning v sysComponent Select -
[motionController | weight kg
B satetyrules unitPrice 5USD
& Sensors o
Encoder 4
=]
= v
b 4 TargetFasitior 2
o Trajectory Plannikg i Motion [m]
SensorData < b SensorData
TargetPosition —(P> TargeiPasition Encoder b
MotionGommand - & MetionCommand
[C°T)
] Gopyright 2019 The MathWorks, Inc.
» | «a0
Interfaces @
S|~ L &~ By, - ||Search Q| Dictionary View -
Type Dimensions Units Complexity Minimum Maximum Description
@ ex_Robotarch_props sk
Ready 100% VariableStepAuto

This example shows a motion control architecture, where a sensor obtains information from a motor,
feeds that information to a controller, which in turn processes this information to send a control
signal to the motor so that it moves in a certain way. You can start with this rough description and
add component properties, interface definitions, and requirements as the design progresses.

Components

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

The Component element in System Composer can represent a component at any level of the system
hierarchy, whether it is a major system component that encompasses many subsystems, such as a
controller with its hardware and software, or a component at the lowest level of hierarchy, such as a
software module for messaging.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts.

Add Components

Use one of these methods to add components to the architecture:

* Draw a component — In the canvas, left-click and drag the mouse to create a rectangle. Release
the mouse button to see the component outline. Select the Component block option to commit.

1-5

1 Architecture Model Editing

* Create a single component from the palette —

untitled

® untitled

untitled

B E e

1
]
:

(2] B [

B E OB E

i

S

* Create multiple components from the palette —

1-6

Compose Architecture Visually

[l

[Bl [

s B E OB E

untitled HEES
untitled ¥
untitled
Component Component
it

Name Component

Each component must have a name that is unique within the same architecture level. The name of the
component is highlighted upon creation so you can directly type the name. To change the name of a

component, click the component and then click its name.

Sensor

1-7

1 Architecture Model Editing

Move Component

Move a component simply by clicking and dragging it. Blue guidelines may appear to help align the
component with other components.

untitled TS

® |4}

untitled P hd

untitled

EY ol

....... E Sensor Componentl

[

LT e N

Component2

i

P E OB E

Resize Component
Resize a component by dragging corners.

1 Pause the pointer over a corner to see the double arrow.

Componenti

L

2 Click the corner and drag while holding the mouse button down. If you want to resize the
component proportionally, hold the Shift button as well.

1-8

Compose Architecture Visually

[T]
Component1
0 '3%

3 Release the mouse button when the component reaches the size you want.
Delete Component
Click a component and press Delete to delete it. To delete multiple components, select them while

holding the Shift key down, then press Delete.

Ports

A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

There are different types of ports:

* Component ports are interaction points on the component to other components.

* Architecture ports are ports on the boundary of the system, whether the boundary is within a
component or the overall architecture model.

For example, a sensor might have data ports to communicate with a motor and a controller. Its input
port takes data from the motor, and the output port delivers data to the controller. You can specify
data properties by defining an interface as described in “Define Port Interfaces Between
Components” on page 3-2.

Add Component Port

Represent the relationship between components by defining directional interface ports. You can
organize the diagram by positioning ports on any edge of the component, in any position.

1 Pause over the side of a component. A + sign and a port outline appear.

Sensor T

"

2 Click the port outline. A set of options appear for an Input, Qutput, or Physical port.

1-9

1 Architecture Model Editing

1-10

Sensor

3 Select Output to commit the port. You can also name the port at this point.

Sensor

o -

q

An output port is shown with the *'icon, an input port is shown with the icon, and a physical

port is shown with the © icon and is nondirectional.
You can move any port to any component edge after creation.
Add Architecture Port

You can also create a port for the architecture that contains components. These system ports carry
the interface of the system with other systems. Pause on any edge of the system box and click when
the + sign appears. Click the left side to create input ports and click the right side to create output
ports.

Compose Architecture Visually

untitled jriaEH
@ |Funtitied ¥ hd
€| untitled
[FE|
D Sensor Component1
E OutBus [» B InBus
[
InBus Ouisustey
(3] .
[
Motor
= InBus
(&
-]
» | ah
Name Port

Every port is created with a name. To change the name, click it and edit.

Componenti

—
gnEus

Ports of a component must have unique names.

Move Port

You can move a port to any side of a component. Select the port and use arrow keys.

Arrow Key Original Port Edge Port Movement
Up Left or right If below other ports on the same
edge, move up, if not, move to
the top edge
Top or bottom No action

1-11

1 Architecture Model Editing

1-12

Arrow Key Original Port Edge Port Movement

Right Top or bottom If to the left of other ports on
the same edge, move right, if
not, move to the right edge

Left or right No action

Down Left or right If above other ports on the same
edge, move down, if not, move
to the bottom edge

Top or bottom No action

Left Top or bottom If to the right of other ports on
the same edge, move left, if not,
move to the left edge

Left or right No action

The spacing of the ports on one side is automatic. There can be a combination of input and output
ports on the same edge.

Delete Port

Delete a port by selecting it and pressing the Delete button.

Connections

Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an
interface on a port to define how the components interact.

Connections are visual representations of data flow from an output port to an input port. For
example, a connection from a motor to a sensor carries positional information.

Connect Existing Ports
Connect two ports by dragging a line:

Click one of the ports.
Keep the mouse button down while dragging a line to the other port.

Release the mouse button at the destination port. A black line indicates the connection is
complete. A red-dotted line appears if the connection is incomplete.

Sensor Component

OutBus [rmmmmm e e + I InBus

Compose Architecture Visually

You can take these steps in both directions — input port to output port, or output port to input port.
You cannot connect ports that have the same direction.

A connection between an architecture port and a component port is shown with tags instead of lines.

H|

@ [l [

O ®

v BB

untitled s3]
untitled 14 i
untitled
Sensor | Component1
OutBus = I InBus
b il InBus DutBus
Motor
InBus[p—{I> InBus
1)

Connect Components Without Ports

To quickly create ports and connections at the same time, drag a line from one component edge to

another. The direction of this connection depends on which edges of the components are used - left
and top edges are considered inputs, right and bottom edges are considered outputs. You can also

perform this operation from an existing port to a component edge.

Sensor | Componenti

OutBus [= _I_

You can create a connection between an edge that is assumed to be an input only with an edge that is
assumed to be an output. For example, you cannot connect a top edge, which is assumed to be an
input, with another top edge, unless one of them already has an output port.

1-13

1 Architecture Model Editing

1-14

Branch Connections

Connect an output port to multiple input ports by branching a connection. To branch, right-click an
existing connection and drag to an input port while holding the mouse button down. Release the
button to commit the new connection.

Sensor Component1

OutBus [» [» InBus

Create New Components Through Connections

If you start a connection from an output port and release the mouse button without a destination
port, a new component tentatively appears. Accept the new component by clicking it.

Sensor

CutBus

I

Change Line Crossing Style for Overlapping Connections

In complex architectural diagrams, connectors can overlap. You can improve the readability of your
diagram by choosing another line crossing style. Navigate to Modeling > Environment > Simulink
Preferences. In Simulink Preferences, select Editor, then select a Line crossing style. The
default line crossing style, Tunnel, is shown below.

Compose Architecture Visually

Sensor

Signal > |

Rotor Dr-—

Another option, Line Hop, is shown below.

Sensor

Signal >}

Rotor b--—

Motor
I_:t:n- Raotor
Component
I:'- Signal
Motor
Z_:t:- Raotor
Component
(b signal

For more information on line crossing style parameters, see “Line crossing style”.

1-15

1 Architecture Model Editing

1-16

See Also

Functions
createModel | addComponent | addPort | connect | exportModel | importModel

Blocks
Component

More About

“Decompose and Reuse Components” on page 1-17

“Create Interfaces” on page 3-5

“Describe System Behavior Using Sequence Diagrams” on page 5-32
“Organize System Composer Files in Projects” on page 10-2

“Simulate Mobile Robot with System Composer Workflow” on page 4-22

Decompose and Reuse Components

Decompose and Reuse Components

Every component in an architecture model can have its own design, or even several design
alternatives. These designs can be architectures modeled in System Composer or behaviors modeled
in Simulink. Engineering systems often use the same component design in multiple places. A common
component, such as power switch, can be part of all electrical components. You can reuse a
component in System Composer within the same model as well as across architecture models.

Decompose Component

A component can have its own architecture. Double-click a component to view or edit its architecture.
When you view the component at this level, its ports appear as architecture ports. Use the Model
Browser to view component hierarchy.

[JRobot » [F]sensor ¥ hd

Sensor

GPS Gyro

OutBus

You can add components, ports, and connections at this level to define the architecture.

You can also make a new component from a group of components.

1 Select the components. Either click and drag a rectangle, or select multiple components by
holding the Shift button down.

1-17

1 Architecture Model Editing

Position Controller Speed Controller Moter

ClutBues P InBus CarBus P InBus

Encodear

2 (Create a component from the selected elements by right-clicking and selecting Create
Component from Selection.

Component

PO A s KR RS

P PosCommand

DutBues B

As a result, the new component has the selected components, their ports, and connections as part of
its architecture. Any unconnected ports and connections to components outside of the selection
become ports on the new component.

Any component that has its own architecture displays a preview of its contents.

Create Reference Architecture

Some projects use the same, detailed component in multiple places, and require the design of such a
component to be tightly managed. You can create a reference architecture to reuse the architectural
definition of a component in the same architecture model or across several architecture models.
Create such a reference architecture using this procedure:

1 Right-click the Sensor component and select Save as Architecture Model.

1-18

Decompose and Reuse Components

2 Provide a name for the model. By default, the reference architecture is saved in the same folder
as the architecture model. Browse for or type the full path if you want to save it in a different
folder.

Save component as an architecture model — O >
Save architecture model and, optionally, export local
interfaces to a new shared data dictionary.
New model name: |Sen5orReﬂ Browse...
From architecture template:
Default
New data dictionary name:
Cancel Help
3 System Composer creates an architecture model with the provided name, and links the
component to the new model. The linked model is indicated in the name of the component
between the <> signs.
Robot >
Robot

Sensor
< SensorRef =] i Component1

"OutBus P> [> InBus

Motor

B InBus

All architecture models can reference this new architecture model through linked components.

1-19

1 Architecture Model Editing

1-20

Use Reference Architecture

You can use a reference architecture, saved in a separate file, by linking to it from a component.
Right-click the component and select Link to Model. You can also use the Create Reference option
in the element palette directly to create a component that uses a reference architecture.

To link a selected component to an existing architecture model, right-click the Trajectory
Planning component and select Link to Model.

Provide the full path to the reference architecture. If the linked component has its own ports and
components, this content is deleted during linking and replaced by that of the reference architecture.
The ports of the linked component become the architecture ports in the reference architecture.

Trajectory Planning
< planning_algarithm =

[UserCommand
[» Obstaclelnfo path =

[» SensorData

Any change made in a reference architecture is immediately reflected in the models that link to it. If
you move or rename the reference architecture, the link becomes invalid and the linked component
displays an error. Link the component to a valid reference architecture.

Remove Reference Architecture

In some cases, you have to deviate from the reference architecture for a single component. For
example, a comprehensive sensor model, referenced from a local component, may include too many
features for the motion control architecture at hand and require simplification for that architecture
only. In this case, you can remove the reference architecture to make local changes possible. Right-
click a linked component and select Inline Model.

Decompose and Reuse Components

Trajectory Planning
<= planning_algarithm =

Explore
[Obstaclelnfo

Open

[» SensorData

Open In New Tab

Open In New Window
Open As Top Model

& Cut Ctrl+X

Copy Ctrl+C
Paste Crl+V
Inline Model... I}

This operation provides two options:

* Interface and subcomponents — Ports, interfaces, and subcomponents of the reference
architecture are copied to the component.

* Interface only — The ports and designated interfaces of the reference architecture are reflected
on the component, but the composition is blank.

Once the reference architecture is removed, you can start making changes without affecting other
architectures. However, you cannot propagate local changes to the reference architecture. If you link
to the reference architecture again, local changes are lost.

To remove a Stateflow® chart behavior, see “Remove Stateflow Chart Behavior from Component” on
page 5-26.

Create Variants

A component can have multiple design alternatives, or variants.

A variant is one of many structural or behavioral choices in a variant component.

Use variants to quickly swap different architectural designs for a component while performing
analysis.

A variant control is a string that controls the active variant choice.
Set the variant control to programmatically control which variant is active.

You can model variations for any component in a single architecture model. You can define a mix of
behaviors (defined in a Simulink model) and architectures (defined in a System Composer
architecture model) as variant choices. For example, a component may have two variant options that
represent two alternate structural decompositions.

Convert a Component to a Variant Component adding variant choices to the component. Right-click
the Sensor component and select Add Variant Choice.

1-21

1 Architecture Model Editing

The '# badge on the component indicates that it is a variant, and a variant choice is added to the
existing composition. Double-click the component to see variant choices.

« 4l RobotArch Sensor ¥ i
& RobotArch L4 DSensor » -
/@l s i
ensor (Variant)
D Sensor
Sensor
Choice
E > Motioninfo SensorData >
i Maotionlinfo SensorData [» -
'
=) Mationlnfo SensorData
Component
[T
« |

Add Variant Choices

You can add more variant choices to a variant component using the Add Variant Cheice option.
Open and edit the variant by right-clicking and selecting Variant > Open > Variant Name from the

component context menu.

You can also designate a component as a variant upon creation using the object in the toolstrip.
This creates two variant choices by default.

Activate a specific variant choice using the context menu of the block. Right-click and select Variant
> Label Mode Active Choice > Choice (Component). The active choice is displayed in the header
of the block.

1-22

Decompose and Reuse Components

Sensorsi
varianti

Explore

Open

OCpen In New Tab
Open In New Window

Jﬂ Cut Ctrl+X

Copy Ctrl+C

L& Paste Ctrl+v
Delete Del

Add Variant Choice

Variant r Open b

Apply Stereotype Label Mode Active Choice ¥ Choice (Component)
Open in Variant Manager ~ Variant1 (Sensors)

Create Spotlight From Component I

Create Software Architecture from Component

You can create a software architecture model from a component in a System Composer architecture
model and reference the software architecture model from the component. You can use software
architectures to link Simulink export-function, rate-based, or JMAAB models to components in your
architecture model to simulate and generate code. For more information, see “Create Software
Architecture from Architecture Model Component” on page 8-5.

See Also

Functions
createArchitectureModel | LinkToModel | inlineComponent | addVariantComponent |
makeVariant | addChoice | setActiveChoice

Blocks
Reference Component | Variant Component

More About

. “Describe Component Behavior Using Simulink” on page 5-2

. “Describe Component Behavior Using Stateflow Charts” on page 5-23
. “Organize System Composer Files in Projects” on page 10-2

. “Simulate Mobile Robot with System Composer Workflow” on page 4-22

1-23

1 Architecture Model Editing

Build Architecture Models Programmatically

1-24

Build an architecture model programmatically using System Composer™.
Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");

interface = dictionary.addInterface("GPSInterface");

element = interface.addElement("SignalStrength");

valueType = dictionary.addValueType("SignalStrengthType",Units="dB",Description="GPS Signal Stre!
element.setType(valueType);

physicalInterface = dictionary.addPhysicallnterface("PhysicalInterface");

physicalElement = addElement(physicallnterface,"ElectricalElement",Type="electrical.electrical")
linkDictionary(model, "SensorInterfaces.sldd");

Save the changes to the interface data dictionary.
dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel ("mobileRobotAPI");

View the interfaces in the Interface Editor.

Build Architecture Models Programmatically

Interfaces

& ~ C||& |~

b Qg} Sensorinterfaces.sidd

~ &= GPSinterface

SignalStrength (SignalStrengthType)

[signalStrengthType
~ €0 Physicalinterface

ElectricalElement

3

|| Dictionary View

Type Dimensions Units Description

SignalStrengthType dB

dB

GPS Signal Strength

double GPS Signal Strength

Connection: foundation_electrical electrical

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor addComponent(arch, "Sensor");
sensorPorts addPort(componentSensor.Architecture, {'MotionData', 'SensorPower'},{'in', 'physical’
sensorPorts(2).setInterface(physicallnterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts addPort(componentPlanning.Architecture, {'Command', 'SensorPowerl', 'MotionCommand'
planningPorts(2).setInterface(physicallnterface)

componentMotion
motionPorts

addComponent(arch, "Motion");
addPort(componentMotion.Architecture, {'MotionCommand', 'MotionData'},{'in"', 'out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface
ownedElement
subInterface

motionPorts(2).createInterface("Datalnterface");
ownedInterface.addElement("Rotation");
ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion component.
In the Interface Editor, switch from Dictionary View to Port Interface View.

Interfaces

o v || - |8 | iE ~||Bs| || Search

Type

Dimensions

|| Port Interface View

Units

* 'O MotionData
elem0

Rotation

double
double

deqgrees

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

1-25

1 Architecture Model Editing

c_sensorData = connect(arch, componentSensor, componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion, componentSensor);
c_motionCommand = connect(arch,componentPlanning, componentMotion);

Add and Connect Architecture Port
Add an architecture port on the architecture.
archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning, "Command");
c_Command = connect(archPort, compPort);

Save the model.
model.save
Arrange the layout by pressing Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

mobileRDbotAPl 4 -
mobileRobotAPI
Motion SenEor
> MotionCommand MaotionData > > MotionData
Planning
b+ Command {ySensorPower

Commandfp— > Command
MotionCommand [>
{ySensorPowert

b

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values. Along with the built-in analysis
capabilities of System Composer, stereotypes help you optimize your system for performance, cost,
and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

1-26

Build Architecture Models Programmatically

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType
sCompSType

addStereotype(profile, "physicalComponent",AppliesTo="Component");
addStereotype(profile, "softwareComponent",AppliesTo="Component");

Create a stereotype for connections.
sConnSType = addStereotype(profile, "standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType, 'ID',Type="uint8");
addProperty(elemSType, 'Description',Type="string");
addProperty(pCompSType, 'Cost',Type="double",Units="USD");
addProperty(pCompSType, 'Weight',Type="double",Units="g");
addProperty(sCompSType, 'develCost',Type="double",Units="USD");
addProperty(sCompSType, 'develTime',Type="double",Units="hour");
addProperty(sConnSType, 'unitCost',Type="double""',Units="USD");
addProperty(sConnSType, 'unitWeight', Type="double",Units="qg");
addProperty(sConnSType, 'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.
applyProfile(model, "GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning, "GeneralProfile.softwareComponent")
applyStereotype(componentSensor, "GeneralProfile.physicalComponent™")
applyStereotype(componentMotion, "GeneralProfile.physicalComponent")
Apply the connector stereotype to all connections.
batchApplyStereotype(arch, 'Connector', "GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch, 'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch, 'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor, 'GeneralProfile.projectElement.ID', '001");
setProperty(componentSensor, 'GeneralProfile.projectElement.Description', "' 'Central unit for all
setProperty(componentSensor, 'GeneralProfile.physicalComponent.Cost', '200");
setProperty(componentSensor, 'GeneralProfile.physicalComponent.Weight', '450");
setProperty(componentPlanning, 'GeneralProfile.projectElement.ID', '002");

1-27

1 Architecture Model Editing

1-28

setProperty(componentPlanning, 'GeneralProfile.projectElement.Description’,"'"''Planning computer'’
setProperty(componentPlanning, 'GeneralProfile.softwareComponent.develCost', '20000");
setProperty(componentPlanning, 'GeneralProfile.softwareComponent.develTime"', '300");
setProperty(componentMotion, 'GeneralProfile.projectElement.ID', '003");
setProperty(componentMotion, 'GeneralProfile.projectElement.Description', "' 'Motor and motor contr
setProperty(componentMotion, 'GeneralProfile.physicalComponent.Cost', '4500");
setProperty(componentMotion, 'GeneralProfile.physicalComponent.Weight', '2500");

Set the properties of connections to be identical.

connections = [c_sensorData c motionData ¢ _motionCommand c Command];

for k = 1l:length(connections)
setProperty(connections(k), 'GeneralProfile.standardConn.unitCost','0.2");
setProperty(connections(k), 'GeneralProfile.standardConn.unitWeight', '100");
setProperty(connections(k), 'GeneralProfile.standardConn.length','0.3");

end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;
motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn', 'controlOut'},{'in", 'out'})

controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');

scopePorts = addPort(motionScope.Architecture,{'scopeln', 'scopeQut'},{'in', 'out'});
scopeCompPortIn = motionScope.getPort('scopeln');

scopeCompPortOut = motionScope.getPort('scopelut');

c¢_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2), 'DestinationElement',"Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn, 'GeneralProfile.standardConn")

Save the model.
model.save
Arrange the layout by pressing Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Motion');

Build Architecture Models Programmatically

52 mobileRobotaPl b =] Motion P ™
Motion
Controller Scope
b HMotionCommand MotionData [b
MationCommand i b= contralln controlOut [» b scopeln scopelut [4 MationData . Rotation
R0

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch referenceModel.Architecture;

newComponents addComponent (referenceArch, "Gyroscope");
referenceModel.save

linkToModel (motionController, "mobileMotion");

Controller
< mobileMofion =

Sxroacops

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

1-29

1 Architecture Model Editing

1-30

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp, choicel] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp, {'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand', 'MotionData'},{'in', 'out'});
Make MotionAlt the active variant.

setActiveChoice(variantComp, 'MotionAlt")

Arrange the layout by pressing Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Planning');

Motion (Variant)

Motionommand hMotionlata
MotionAlt

k= MotionCommand MotionData b=

i b

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

See Also

Functions
createModel | createDictionary | addInterface | addPhysicalInterface | addValueType
| addElement | setType | createOwnedType | LinkDictionary | addComponent | addPort |

Build Architecture Models Programmatically

setInterface | connect | save | getPort | createProfile | addStereotype | addProperty |
save | applyProfile | applyStereotype | batchApplyStereotype | setProperty |
linkToModel | makeVariant | addChoice | setActiveChoice | closeAll

Blocks
Component | Reference Component | Variant Component

More About

“Compose Architecture Visually” on page 1-2

“Define Profiles and Stereotypes” on page 4-2

“Use Stereotypes and Profiles” on page 4-10

“Decompose and Reuse Components” on page 1-17

“Create Interfaces” on page 3-5

“Organize System Composer Files in Projects” on page 10-2

“Simulate Mobile Robot with System Composer Workflow” on page 4-22

1-31

1 Architecture Model Editing

Modeling System Architecture of Small UAV

Overview

This example shows how to use System Composer™ to set up the architecture for a small unmanned
aerial vehicle, composed of six top-level components. Learn how to refine your architecture design by
authoring interfaces, inspect linked textual requirements, define profiles and stereotypes, and run a
static analysis on such an architecture model.

Open the project.

>> scExampleSmallUAV

Starting: Simulink

scExampleSmallUAVModel

Flight Support Components

AiData

Payload Data Link[{>

ADSBDala ADSBDala

GPSDataGPSSupportData

AirData

I> operatorCmds "~ DatalLink [>)—Data Link

v
FlightComputer

Propulsion
GS Commands—> GS Commands
Payload Cmds [Airframe

dT < adr
EngineStatus B> I EngineStatus Control Surface Cmds 1> > ciriSricDeflectioh
1> /4GS Commands - ——
" FuelLevel 1> B FuelLevel
ightCmds 1> > lightCmds
PurStatus [» > PwrStatus

Telamety
semetry-L{ 4

Status.
Telemetry

Telemetry >

Pwr!

SupervisoryComputer

I+ FuelData

i+ EngineStatus

Copyright 2018 The MathWorks, Inc.

Each top-level component is decomposed into its subcomponents. Navigate through the hierarchy to
view the composition for each component. The root component, scExampleSmallUAVModel, has
input and output ports that represent data exchange between the system and its environment.

Author Interfaces

Define interfaces for domain-specific data between connections. The information shared between two
ports defined by interface element property values further enhances the specification. To open the
Interface Editor, in the Modeling tab in the toolstrip, click Interface Editor.

1-32

Modeling System Architecture of Small UAV

Click the GS Commands port on the architecture model to highlight the
architecture_gsCommands interface and indicate the assignment of the interface.

S <
@M
7]
% © Payload
© a
o
- © M
& Q A e
o < < > operatorCmds
Vv v Fa% £

FlightComputer

GS Commands[p :ﬁf GS Commands
. Payload Cmds [Airframe

S |

| [Fer— . vy
. .
I> EngineStatus Contrgl Surface Cmds [» > ctriSrfcDeflecton
| Lo
B
[FuelLevel ___
| s
lightCmds > [> lightCmds
> PwrStatus
(3
l v £
-9
| -
E=
e M
ES
Interfaces ?
S~-g|R(E| |& |~ ~|[B8] =][searcn Q[Dictionary View -
Type Dimensions Units Complexity Minimum Maximum Description
- 5'9 scExampleSmallUAVModel.six
| ~ = architecture_gsCommands
~ apConfigParams (param_value_bus) | param_value_bus 1 real 0 n
param_count uint16 1 real n 0 Total number of onboard parameters
param_id int8 16 real n 0 Onboard parameter id, terminated by NULL if the length is less than 16 human-|
param_index uint16 1 real i}] Index of this onboard parameter
param_type uintg 1 real i}] Onboard parameter type: see the MAV_PARAM_TYPE enum for supported datg]
param_value single 1 real i}] Onboard parameter value
~ gsCommands (gs_commands_bus) gs_commands_bus 1 real i} i}
RTB uintd 1 real n 0 Return to Base Command
Uce single 1 real n 0 Airspeed Commanded by the GS
guidanceMode uintd 1 real n 0
h_c_midLevel single 1 real i}] Commanded altitude when in Mid Level Commands Mode. Also used as the alti
isManualModeOn uintg 1 real i}]
psiDot_c_mdiLevel single 1 real i}] Turnrate command when in mid Level Commands guidance mode

Inspect Requirements

A Requirements Toolbox™ license is required to inspect requirements in a System Composer
architecture model.

1-33

1 Architecture Model Editing

1-34

Components in the architecture model link to system requirements defined in
smallUAVReqs.slregx. Open the Requirements Manager. In the bottom right corner of the
model pane, click Show Perspectives views. Then, click Requirements.

Enter perspective

C

Ll

Code

Enter perspactive

Requiremeants

Select components on the model to see the requirement they link to, or, conversely, select items in the
Requirements view to see which components implement them. Requirements can also be linked to
connectors or ports to allow traceability throughout your design artifacts. To edit the requirements in
smallUAVRegs.slregx, select the Requirements Editor (Requirements Toolbox) from the menu.

The Carrying Capacity requirement highlights the total mass able to be carried by the aircraft.
This requirement, along with the weight of the aircraft, is part of the mass rollup analysis performed
for early verification and validation.

Requirements - scExampleSmallUAYModel 4
View: |Requirements ~ | [3 H & E = S
A~
& 1.1.11 #25 Flight Computer
= 1.1.12 #4 Enduance
¥ E 12 #11 Communications
E 1.2.1 #12 Flight Control
= 1.2.2 #13 Payload
¥ E 1.3 #14 Payload Capabilities
B 131 #17 Carrying Capacity
= 1.3.2 #16 Payload Bay Capacirty
E 133 #18 Default Payload b
£ >

Define Profiles and Stereotypes

To complete specifications and enable analysis later in the design process, stereotypes add custom
metadata to architecture model elements. This model has stereotypes for these elements:

* On-board element, applicable to components

* RF connector, applicable to ports

* RF wiring, applicable to connectors

Modeling System Architecture of Small UAV

Stereotypes are defined in XML files by using profiles. The profile UAVComponent.xml is attached to
this model. Edit a profile by using the Profile Editor. On the Modeling tab, click Profile Editor.

The display appears below.

[=] System Compaoser Profile Editor

- [m] x
-~
=/ System Composer Profile Editor
Describe architecture profiles, stereotypes and custom property sets for use with System Compeser architecture models. show more...
Profile EE New Profile —j] Open | | | Save |« Stereotype EE} New Stereotype 2@ Import into | Select | @

Profile Browser Stereotype Properties

Filter profiles: | <all>

Name: ‘ OnboardElement

Applies to: | Component < =3 Icon &
v [=] UAVComponent

*% OnboardElement Base stereotype: | <nothing> -
& RFConnector

RFWiring [Abstract stereotype

Description: |Represents the base component of UAVComponent

} Default Stereotypes for Composition

ar % v
Property name Type Name Unit Default
1 Mass double ¥ [nfa kg 0
2 Power double T [nfa mW 0
3 RFHarnessLength double ~|n/a cm 0

[show inherited properties (read-only)

Analyze the Model

To run static analyses on your system, create an analysis model from your architecture model. An
analysis model is a tree of instances generated from the elements of the architecture model in which

all referenced models are flattened out, and all variants are resolved.

To open the Instantiate Architecture Model tool, click Analysis Model on the Views menu.

Run a mass rollup on this model. In the dialog, select the stereotypes that you want to include in your

analysis. Select the analysis function by browsing to utilities/massRollUp.m. Set the model
iteration mode to Bottom-up.

1-35

1 Architecture Model Editing

Instantiate Architecture Model >

Description

Create an instance model from this architecture model by flattening out all referenced models and their components. Such an ©)
instance model may be used for system-level analysis expressed as MATLAB functions. E

Step 1: Select Stereotypes Step 2: Configure Analysis
Select the sterectypes to make available on Function
the instance model Analysis function:
[massRollup |13 |4 @
A UAVComponent Function arguments (comma-separated):
OnboardElement | |
RFConnectar
i »» massRollUp(instance
RFWiring P)
Model Iteration
Iteration Order: |Bottom-up -
Instance Model Properties
Mame: |scExampleSmallUA\.fM0del
[Normalize Units
[] Strict Mode
Don't see your profile? |Profile Editor ... 23 Cancel p Instantiate

Uncheck Strict Mode so that all components can have a Mass property instantiated to facilitate
calculation of total mass. Click Instantiate to generate an analysis.

1-36

Modeling System Architecture of Small UAV

I=7 Instances Mass Power
4 [scExampleSmallUAVModel 15.462
4 [Airframe 9.25
o Fuselage 17
o LandingGear 1.65
g Tail and Boom 27
o Wings 32
= Airframe:ctrlSricDeflection-=LandingGear:Brake
= Airframe:ctrSricDeflection-=Tail and Boom:dR_dE
+= Airframe:ctriSricDeflection-=Wings:dA_dF
= Airframe:lightCmds->Tail and Boom:Landing Strobe
= Airframe:lightCmds->Wings:MNavigation Lights
4 E Flight Support Components 0.629
4 [ADSB Module 0.156
O ABDSE Antenna 0.058
o ADSE Board 0.093
= ADSB Board:RF Signal->ABDSB Antenna:RF Signal
= ADSB Module:ADSBData->ADSE Board: ADSBData
4 [GPS Module 0.398
O GPS Antenna 0.128
o GPS Board 0.27
= GPS Board:GPSData->GPS Module:GPSModeuleData
= GPS Board:RFSignal-=GPS Antenna:RFSignal
o Pitot Tube Module 0.075
= Flight Support Components:ADSBData->ADSE Module:ADSBData
= GPS Module:GPSModeuleData->Flight Support Components:GPSSupportData
= Pitot Tube Module:AirData->Flight Support Components:AirData
4 [(3 FlightComputer 0.388
o Main Board 0.145
O Protective Case 0.195
o Telemetry Antenna 0.048

= FlightComputerAirData->Main Board:AirData

[R e J s Y e B e e

[I e e R e

[R e i e e

RFHarnessLength

[R e J e e R e e

[R e e e

[R e i e e

Length

Al A K

= in

[
AR AFAD

Once on the Analysis Viewer screen, click Analyze. The analysis function iterates through model
elements bottom up, assigning the Mass property of each component as a sum of the Mass properties
of its subcomponents. The overall weight of the system is assigned to the Mass property of the top
level component, scExampleSmallUAVModel.

See Also
setInterface | createProfile | addStereotype | addProperty | applyStereotype |
instantiate

More About

“Create Interfaces” on page 3-5

“Manage Requirements” on page 2-8

“Define Profiles and Stereotypes” on page 4-2

“Analyze Architecture” on page 7-2

“Organize System Composer Files in Projects” on page 10-2

1-37

Requirements

* “Link and Trace Requirements” on page 2-2
* “Manage Requirements” on page 2-8
* “Update Reference Requirement Links from Imported File” on page 2-15

2 Requirements

Link and Trace Requirements

2-2

This example shows how to work with requirements in an architecture model.

Allocate functional requirements to components to establish traceability. By creating a link between a
component and the related requirement, you can track whether all requirements are represented in
the architecture. You can also keep requirements and design in sync, for example, if a requirement
changes or if the design warrants a revision of the requirements. You can link components to
requirements in Requirements Toolbox™, test cases in Simulink® Test™, or selections in MATLAB®,
Microsoft® Excel®, or Microsoft Word.

A Requirements Toolbox license is required to link, trace, and manage requirements in System
Composer™.

Open the model exMobileRobot.
systemcomposer.openModel ("exMobileRobot");

Manage requirements and architecture together in the Requirements Manager from Requirements
Toolbox. Navigate to Apps > Requirements Manager. You are now in the Requirements Perspective
in System Composer.

Link and Trace Requirements

] exMobileRobot E| =

: 3

5| @ exMabileRobot ¥ v g

2. 5

= | & exMobileRobot ‘g
E3 g
[=l:

Communication ;54

Command =

Sensor =l
[#25: Docking station by -
D . I Sensdfals Feedback p | — e Fesdback SansorData 4 > W™ SanscrDas
A n N
El & .
= 2 1 Malien By B
; £
o | Battery = | Motor Feadbackh{>
FoBugges Y
’1\ e Ouiflus b b InBus MotianDiata b
|
E1S: Battery life i
[T
» | izl
(1]
Requirement links - exMobileRobot)

vew: ks~ = e
hd |l'£| exMobileRobiot.slm:x Changed source: 0/12 Changed destination: 0/12

59 Communication (MobileRobotRe... Communication Implements Communication

59 Maotion (MobileRobotRequireme... exMobilzRobot Implements Maotion

5-7 Audible signals (MobileRobotRe... AlertGeneration Implements Audible signals

59 Trajectory Planning (MobileRob... Command Implements Trajectory Planning

C’ Battery life (MobileRobotReguire... Battery Implements Battery life

5-7 Sensing (MobileRobotRequirem... Command Implements Sensing

59 Obstacle reaction (MobileRobot... Command Implements Obstacle reaction

C’ Sensing (MobileRobotRequirem... Sensor Implements Sensing

C-') Absolute position sensing (Mobil... GPS Implements Absolute position sensing

59 Budgets (MobileRobotReguirem... exMobileRobot Implements Budgets

C’ Docking station (MobileRobotRe... exMobileRobot Implements Diocking station

59 Battery charging (MobileRobotR... Battery Implements Battery charging

80% VariableStepAuto

Ready

Links can be created and managed through the Requirements Perspective. For more information, see
“Manage Requirements” on page 2-8. This example shows an alternative approach using the
Requirements Editor.

Open the requirements in the Requirements Editor (Requirements Toolbox).

slreq.open('MobileRobotRequirements');

Select the requirement to be linked.

2 Requirements

Requirement: #10

Inde IC Details
Al |h| MobileRobotRegquirements * Properties
v E1 #1 Motion Type: Functional -
B 11 #6 Top speed Index: -
B 12 #7 Load capacity T |:1:
B 13 #8 Position accuracy
Summary: |Audib|e signals
> B 2 #4 Trajectory Planning
v E 3 #2 Communication Description | Rationale
v B 31 %10 Audible signals b | Ava viw v|B 7z U]l E = = =
E 311 #18 Path error Device shall convey operation errors via audible signals.
E 312 =#19 Mechanical errar
E 313 #20 Battery drain
> B 3.2 #16 Command interface
> B 4 #3 Obstacle avoidance
> B s #23 Power
> El 6 #5 Budgets

Keywords:

» Revision information:

¥ Links

El ¢= Implemented by:
D AlertGeneration

Select the component to be linked in the architecture model. Right-click and select Requirements >

Link to Selection in Requirements Browser.

2-4

Link and Trace Requirements

Explore
Open In New Tab

Open In New Window

4 cut Ctrl+X
By cCopy Ctrl+C
[Ppaste Ctrl+V

Save As Architecture Model...
Create Software Architecture Maodel...
Link to Model...

Add Variant Choice

Apply Stereatype b

Create Spotlight From Component

Format

1. "Sensing"

Link to Selection in MATLAB Editor

Link to Selection in Word
Link to Selection in Excel

Select for Linking with Simulink
Add Link to Selected Object(s)

Open Outgoing Links dialog ...
Delete All Qutgoing Links ..

Copy URL to Clipboard

When you first link a requirement in an architecture model, a link set file with extension .slmx is
created to store requirement links. The Requirements context menu displays the linked
requirements.

You can also create a link using the Requirements Editor. First, select the component in the
architecture model. Then, in the Requirements Editor (Requirements Toolbox), right-click the
requirement and select Link from "<Component Name>" (Component).

2-5

2 Requirements

u Requirement: #2

Details
w %] MobileRobotRequirements ~ Properties
v E1 #1 Mation Type: Functiona] -
B 11 #6 Top speed Indec: 3
B 1z #7 Load capacity Custom ID: |2
B 13 #8 Position accuracy
Summary: |Comrnunication
E 2 #4 Trajectory Planning
viE 3 #2 Communication Description Rationale
v B 31 #10 Audible sigr Cut Ctrl+X
El 311 #18 Pathermor Copy Cirl+C
E 312 #19 Mechanical [eEE Ctrl+V
B 313 #20 Baterydra Tass Del
E 32 #16 Command i Add Child Requirement
E 4 #3 Obstacle av Add Requirement after
B s #23 Power Move up
B s #5 Budgets Mave down
Expand All
Collapse All

Link from "Communication” (Component)
Link from Selected Architecture View Element D?

Select for Linking with Requirement

=

You can also create requirement links with blocks and subsystems in Simulink models. For more
information, see “Link Blocks and Requirements” (Requirements Toolbox).

The =l badge on a component indicates that it is linked to a requirement. This badge also shows at

the lower-left corner of the architecture model.

Sensor

L%]

> InBUs

SensorData >

Link and Trace Requirements

To trace requirement links to a component, right-click the Command component and select
Requirements > Open Outgoing Links dialog. Here, you can create new requirements, delete

existing ones, and change their order.

Outgoing Links: Comrmand
Requirements Document Index
New Trajectory Planning (MobileRobotRequirements#4)
Sensing (MobileRobotRequirements#29)
Up Obstacle reaction (MobileRobotRequirements£30)
Down
Delete
Copy
Description: |Traject=:+r\,-' Planning (MobileRobotRequirements#4)
Document type: | Requirement Set = Use current
Document: | MobileRobotRequirements.slregx ~ Browse...
Location: ;
(Type/Identifier) Named item #4
Keywords: | W |
Cancel Help Apply
See Also
More About
. “Manage Requirements” on page 2-8
. “Organize System Composer Files in Projects” on page 10-2
. “View Requirements Toolbox Links Associated with Model Elements”
. “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 7-23

. “Simulate Mobile Robot with System Composer Workflow” on page 4-22

2-7

2 Requirements

Manage Requirements

2-8

Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements.

A Requirements Toolbox™ license is required to link, trace, and manage requirements in System
Composer.

To enhance traceability of requirements, link system, functional, customer, performance, or design
requirements to components and ports. Link requirements to each other to represent derived or
allocated requirements. Manage requirements from the Requirements Manager on an architecture
model or through custom views. Assign test cases to requirements using the Test Manager for
verification and validation.

A Simulink Test™ license is required to use the Test Manager and to create test harnesses for
components in System Composer.

A requirement set is a collection of requirements. You can structure the requirements hierarchically
and link them to components or ports.

Use the Requirements Editor to edit and refine requirements in a requirement set. Requirement
sets are stored in SLREQX files. You can create a new requirement set and author requirements using
Requirements Toolbox, or import requirements from supported third-party tools.

A link is an object that relates two model-based design elements. A requirement link is a link where
the destination is a requirement. You can link requirements to components or ports.

View links using the Requirements Perspective in System Composer. Select a requirement in the

Requirements Browser to highlight the component or the port to which the requirement is assigned.
Links are stored externally as SLMX files.

Mobile Robot Architecture Model

This example shows a mobile robot platform architecture.

Manage Requirements

Manage requirements and architecture together in the Requirements Manager from Requirements
Toolbox. Navigate to Apps > Requirements Manager. You are now in the Requirements Perspective
in System Composer.

Manage Requirements

exMobileRobot it
® | exMobileRobot P ¥
@ | exMobileRobot
IE [le‘lﬂl‘ﬂﬁn |-q Command ‘i _Eumr _i
D b Sensdfifala Feedback :~ —ifiFeedback SensarDaka ‘.. b IndiliE Lanzaiia b
& Fs &
- -
Decking l;: @: a Feedoack{ >
= :
E
Battery L |Ilutnr
Ousius b P oinBus MotionData b
R
L
Requirements - exMobileRobot L
View: |Requirements ~ | | %k 3 l@—‘ Search
s
Index 1D summa
bt |h| MaobileRobotRequirements
» B 1 #1 Mation
» B 3 #2 Communication
> E 4 #3 Obstacle avoidance
> E 2 #4 Trajectory Planning
» B 6 #5 Budgets
> B 5 #23 Power

Trace Requirements

When you click a component in the Requirements Perspective, linked requirements are highlighted.
Conversely, when you click a requirement, the linked components are shown.

2-9

2 Requirements

'g exMobileRobot B
2| & |E)exmobilerabot b v
)
-l
= | @ | |exMobileRobot
D Communication =/ Command E’| Sensor |
EES: Docking station 3 - .
E "T\ MPLEMENTE b SensorDals Feedback b | —diFesdback SensorDala < (N SehsorDals
0 = w s A
2 [EE1: Mafien Y a
[P —]
Awror
Diseking Battery _%l Motor Feadback [=
[5: Budgets B
I:l MELEMERT CutBus [> InBus MotionData [
i#15: Battary life 1
« |leh/S
A] |
Requirements - exMobileRobot ?
view: [Requirements ~ | (3] 5][@] (&) - [l [4 @l e
A
v |h| MobileRobotRequirements
B 1 #1 Mation
B 2 #4 Trajectory Planning
E 3 #2 Communication
E 4 #3 Obstacle avoidance v

2-10

Use Requirements Traceability Diagram

Visualize traceability of requirements and how they are related using a traceability diagram.

Change the View option on the Requirements Manager from Requirements to Links. Right-click
the Trajectory Planning requirement link and select View Traceability Diagram.

Manage Requirements

I Trajectory Planning ‘ \I_J Sensing ‘ ‘ | Obstacle reaction

Implements Implements

Implements

D Command

According to this traceability diagram, the Command component implements the three requirements
Trajectory Planning, Sensing, and Obstacle reaction.

Change the View option on the Requirements Manager from Links back to Requirements.

For more information, see “Visualize Links with a Traceability Diagram” (Requirements Toolbox).

Link Requirements

To directly create a link, drag a requirement onto a component or port.

2-11

2 Requirements

B

........

Battery

[l

QutBus [

(2] Bl [

|
Y IMPLEMENTS
l#15: Battery life Ly

O B &

iz

L4

L=}
5

Reguirements - exMobileRobot

View: |Requirements ~ | [% O - E=] d ﬁl (Ey

v E 4 #3 Obstacle avoidance
E 41 #29 Sensing
El 42 #30 Obstacle reaction
v E s #23 Power
B 5.1 #15 Battery life
El 52 b #25 Docking station

You can close the annotation that shows the link as necessary. This action does not delete the link.

You can exit the Requirements perspective by clicking the perspectives menu on the lower-right
corner of the architecture model and selecting Exit perspective.

2-12

Manage Requirements

@

e EEs

O B

A @ E

exMobileRobot

exMobiIeRobot 14

« | B

exMobileRobot
Communication = Command = Sensor =
[#25: Docking station 3
I+ SensolDala Feedback [—dllFeedback SensorDala < > WiBus SehsoeDala [
g fea: Mofien oy r:\:
Docking Battery = Motor Feedback [+
[.'45 Budgeis \
i CulBus > [+ InBus MotionData [
215 Battan v) Exit perspective
[#15: Battary life 5 Enter perspective persp
q..J
L I]
L
= " - |
e Review Manager Requiremen

For more information on managing requirements from external documents, see “Manage Navigation
Backlinks in External Requirements Documents” (Requirements Toolbox). To integrate the
requirement links to the model, see “Update Reference Requirement Links from Imported File”.

Verify and Validate Requirements Using Test Harnesses

A test harness is a model that isolates the component under test with inputs, outputs, and verification
blocks configured for testing scenarios. You can create a test harness for a model component or for a
full model. A test harness gives you a separate testing environment for a model or a model
component.

For more information, see “Create a Test Harness” (Simulink Test).

Create a test harness for a System Composer component to validate simulation results and verify
design. The Interface Editor is accessible in System Composer test harness models to enable
behavior testing and implementation-independent interface testing.

Use Simulink Test to perform requirement-based testing workflows that include inputs, expected
outputs, and acceptance criteria. For more information on using Simulink Test with Requirements
Toolbox, see “Link to Test Cases from Requirements” (Requirements Toolbox).

Note Test harnesses are not supported for Adapter blocks in architecture models or Component
blocks that contain reference components in software architecture models.

This example uses the architecture model for an unmanned aerial vehicle (UAV) to create a test
harness for a System Composer component. In the MATLAB Command Window, enter this command.

2-13

2 Requirements

2-14

scExampleSmallUAV

To create a test harness for the Airframe component, right-click the component and select Test
Harness > Create for 'Airframe'.In the Create Test Harness dialog box, specify the name of
your test harness and click OK. Your test harness opens in a new window, and the Harness menu is
available in the toolstrip.

Tip If the model component is not fully wired and in an early step in the design process, you can
select the Advanced Properties tab in the Create Test Harness dialog box and select Create
without compiling the model.

scExampleSmallUAVMode]_Harness1 E=
@& |[*a|scExamplesmalluavModel_Harness1 P hd
@ .
= | >
L ciSricDeflection
(S
{2} i lightCmds
[l
a
Signal =pec. Airframe
and routing
» || E
[[] |

Use the Test Manager with the test harness to create test files and test cases. For more information,
see “Test Harness and Model Relationship” (Simulink Test) and “Create Test Harnesses and Select
Properties” (Simulink Test).

See Also

More About

. “Link and Trace Requirements” on page 2-2

. “Import and Export Architectures” on page 11-2

. “Compose Architecture Visually” on page 1-2

. “Organize System Composer Files in Projects” on page 10-2

. “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 7-23

Update Reference Requirement Links from Imported File

Update Reference Requirement Links from Imported File

After importing requirement links from a file, update links to reference requirements for the model to
make full use of the Requirements Toolbox™ functionality.

model = systemcomposer.openModel ("reqImportExample");

Note: Importing or linking requirements may not work with a web-based Microsoft® Office file
stored in SharePoint or OneDrive. Use a local copy of the file.

Import Requirement Links from Word File

Open the Microsoft® Word file Functional Requirements.docx with the requirements listed.
Highlight the requirement to link.

In the model, select the component to which to link the requirement. Right-click the component and
select Requirements > Link to Selection in Word.

2-15

2 Requirements

Flight S

Explore
Open
Open In New Tab
Open In New Window
Vv
© & Cut Ctrl+X
§ 33 Copy Ctrl+C
§ Y Paste Ctrl+V
a Delete Del
&
0] Save As Architecture Model...
8 Link to Model...
7]
% Add Variant Choice
[Vv Apply Stereotype »
FlightC:
| Create Spotlight From Component
Format ’
> GS Com e 5
Signals & Ports ’
< dT
Requirements »
> EngineSt Properties...
Help
B> FuelLevel
lightCmds >
P> PwrStatus
v
=
I3
E
€
2

Export Model and Save to External File

Export the model and save to an external file.

Link to Selection in Requirements Browser
Link to Selection in MATLAB
Link to Selection in Word I

Link to Selection in Excel

Select for Linking with Simulink
Add Link to Selected Object(s)

Open Outgoing Links dialog ...

Copy URL to Clipboard

exportedSet = systemcomposer.exportModel("regqImportExample");
SaveToExcel("exportedModel",exportedSet);

2-16

Update Reference Requirement Links from Imported File

Import Requirement Links from File and Import to Model

Use the external file to import requirement links into another model.
structModel = ImportModelFromExcel("exportedModel.x1ls","Components", "Ports",

"Connections","PortInterfaces", "RequirementLinks");
structModel.readTableFromExcel

systemcomposer.importModel (" regNewExample",structModel.Components,
structModel.Ports,structModel.Connections, structModel.Interfaces,structModel.RequirementLinks);

Update Links to Reference Requirements
To integrate the requirement links to the model, update references within the model.
systemcomposer.updateLinksToReferenceRequirements (" reqgNewExample", "linktype rmi word","Functiona

Open the Requirements perspective from the bottom right corner of the model palette to view the
requirements.

]
L=

)

Requirements

See Also
importModel | exportModel | updateLinksToReferenceRequirements

More About
. “Link and Trace Requirements” on page 2-2
. “Manage Requirements” on page 2-8

. “Import and Export Architecture Models” on page 11-5
. “Custom Link Types” (Requirements Toolbox)

2-17

Interface Management

* “Define Port Interfaces Between Components” on page 3-2
* “Create Interfaces” on page 3-5

* “Assign Interfaces to Ports” on page 3-10

* “Interface Adapter” on page 3-16

* “Manage Interfaces with Data Dictionaries” on page 3-20
+ “Reference Data Dictionaries” on page 3-23

3

Interface Management

Define Port Interfaces Between Components

3-2

A system engineering solution in System Composer includes a formal definition of the interfaces
between components. A connection shows that two components have an output-to-input relationship,
and an interface defines the type, dimensions, units, and structure of the data.

A data interface defines the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage data interfaces and data
elements and store them in an interface data dictionary for reuse between models.

A data element describes a portion of an interface, such as a communication message, a calculated or
measured parameter, or other decomposition of that interface.

Data interfaces are decomposed into data elements:

* Pins or wires in a connector or harness.
* Messages transmitted across a bus.
» Data structures shared between components.

A value type can be used as a port interface to define the atomic piece of data that flows through that
port and has a top-level type, dimension, unit, complexity, minimum, maximum, and description.

You can also assign the type of data elements in data interfaces to value types. Add value types to
data dictionaries using the Interface Editor so that you can reuse the value types as interfaces or
data elements.

Use interfaces to describe information transmitted across connections through ports between
components.

* “Create Interfaces” on page 3-5: Design interfaces and nested interfaces in the Interface
Editor with data interfaces, data elements, and value types.

* “Assign Interfaces to Ports” on page 3-10: Assign data interfaces and data elements to ports.
Define owned interfaces local to ports.

» “Manage Interfaces with Data Dictionaries” on page 3-20: Save external interface data
dictionaries to reuse between different models, link data dictionaries to architecture models, and
delete data interfaces from data dictionaries.

+ “Reference Data Dictionaries” on page 3-23: Reference data dictionaries so you can selectively
share interface definitions among models. Manage referenced data dictionaries in the Model
Explorer.

* “Interface Adapter” on page 3-16: Use an Adapter block to help connect two components with
incompatible port interfaces by mapping between the two interfaces. Use the Interface Adapter
dialog by double-clicking the Adapter block to map between interfaces, apply an interface
conversion that breaks algebraic loops with unit delays, or insert a rate transition for different
sample time rates. When output interfaces are undefined, you can use input interfaces in bus
creation mode of the Interface Adapter to author owned output interfaces as you work.

The architecture model below represents an adapter, an interface data dictionary, a data interface, a
data element, and a value type.

Define Port Interfaces Between Components

archModel =
@ |[%archModel -
@y archModel
E3
[
D Power] Robot
Choica
b HiiPowerSource -
E PowerSource p— = PowerSource Wire [Tk B St =+ Wire
r
adapter
P
ek
Interfaces =
S ~| e | ||£ v||@| -||£i | sl |~ | |Es, v|| Search ||~Dicti0nar3r View -
/interface data dictionary Type Units
I ~ & archDictionary.sldd
- é Charger data interface
Voltage (VoltageType) 1--..__._“‘__ VoltageType W
Wiring _——~ data element double m
i VoltageType ———— value type double W
~ & RobotPower
RobotVoltage (VoltageType) VoltageType w
Wires double m

Note System Composer interfaces mirror Simulink interfaces that use buses and value types. For
more information, see “Simplify Subsystem and Model Interfaces with Buses”, “Specify Application-
Specific Signal Properties”, and “Describe Component Behavior Using Simulink” on page 5-2.

See Also

More About

. “Specify Physical Interfaces on Ports” on page 5-76

3-3

3 Interface Management

. “Author Service Interfaces for Client-Server Communication” on page 8-41
. “Modeling System Architecture of Small UAV” on page 1-32
. “Modeling System Architecture of Keyless Entry System” on page 9-25

3-4

Create Interfaces

Create Interfaces

In this section...
“Mobile Robot Architecture Model” on page 3-5
“Open Interface Editor” on page 3-5

“Create Composite Data Interfaces” on page 3-6
“Create Value Types as Interfaces” on page 3-7
“Nest Interfaces to Reuse Data” on page 3-8

You can create interfaces between components in System Composer to structure transmitted data.
Use composite data interfaces with data elements or value types to manage data defined on ports.
Assign a data interface or value type to a data element so the data element inherits attributes and
reuses data. Use the model below as a starting point before adding interfaces using the Interface
Editor. For interfaces terminology, see “Define Port Interfaces Between Components” on page 3-2.

To manage interfaces shared between models in data dictionaries, see “Manage Interfaces with Data

Dictionaries” on page 3-20. For information on physical interfaces, see “Specify Physical Interfaces
on Ports” on page 5-76.

Mobile Robot Architecture Model

This example shows a mobile robot platform architecture.

Open Interface Editor

To open the Interface Editor, navigate to Modeling > Interface Editor. The Interface Editor will
open at the bottom of the canvas.

3 Interface Management

exMobileRobot izicH
@® |exMobilerobot ¥ hd
® | exMobileRobot
Communication Command Sensor
E b SenzoData Feedback [.Fee-:lt-ack SensorData B InB3s SensorData [
A -y A
@ e L}
Docking ? ? E Feedback [+ b
=
| Battery Motor
OutBus f» [InBus MotionData [»
[TE
» | i
Interfaces L
< &~ - |B® v|| Search L_g|| Dictionary View - |
Type Dimensions Units Complexity Minimum Maximum Description

@ exMobileRobot slx

Note The System Composer Interface Editor is a web-based widget and might appear blank when
you first launch it. If this occurs, save the model and relaunch MATLAB with the command line option
-cefdisablegpu.

Create Composite Data Interfaces

[ra—
To add a new data interface definition, click the =& icon. Name the data interface sensordata.

* @ exMobileRobot.slx

&= sensordata

To add a data element to the data interface, click the " icon. Data interface and data element
names must be valid MATLAB variable names.

3-6

Create Interfaces

* . exMobileRobot.slx

¥ -é sensordala
coordinates

motorspeed

You can delete data interfaces and data elements in the Interface Editor using the &S button.

You can view and edit the properties of an element in the Property Inspector. Right-click the data
element and select Inspect Properties. For data interfaces, use the Property Inspector to apply

stereotypes

Property Inspector

Properties

Interface : sensordata | Element : motorSpeed

Type
Dimensions
Units
Complexity
Minimum
Maximum
Description

double
1

real
0
0

For a comparative view, you can edit data element properties from the relevant Interface Editor

columns.

* @ exMobileRobot.six
~ & sensordata
coordinates

motorSpeed

Type

double

double

Dimensions

Units Complexity Minimum Maximum Description

real]]

[mg]| real 0 0

Create Value Types as Interfaces

To add a value type in the Interface Editor, select the down arrow next to the = icon and select

Value Type. Name the value type motorSpeedType. Value type names must be valid MATLAB
variable names.

Interfaces

g-lglxe] & -]~

ﬁ Composite Data Interface

Add data interface

[Value Type
Add value type

[

{cl Physical Interface
Add physical interface

Type

Bs | = || Search || Dictionary View -

Dimensions Uinits Complexity Minimurm

3 Interface Management

Right-click the motorSpeed data element and select Set '"Type' > motorSpeedType. The data
element motorSpeed is assigned to the value type motorSpeedType.

Type Dimensions Units Complexity
~ @ exMobileRobot slx
~ & sensordata
coordinates double 1 real
motorspeed Hmeits 1 mis real
Inspect Properties. ..

1] motorSpeedTy 1 real

Set Type + | motorSpeedTy pﬂ

Ly

Any data changes on the motorSpeedType value type is propagated to the motorSpeed data
element. You can reuse value types any number of times. Data changes on a value type will propagate
to each data element that uses the value type.

Nest Interfaces to Reuse Data

A nested interface contains another data interface. Create a nested data interface by assigning a data
interface as the type of a data element. For information about the corresponding buses, see “Create
Bus Objects Using Bus Editor”.

For example, let coordinates be a data interface that consists of x, y, and z coordinates. The
GPSdata data interface includes location and a timestamp. If the location data element is in
the same format as the coordinates interface, you can set its type to coordinates. Right-click
location and select Set 'Type' > coordinates. The available interface options include all value
types and all data interfaces in the model, except the parent of the data element.

Type Dimensions Units Complexity Minimum Maximum
~ i@ exMobileRobot skx
~ & sensordata
coordinates double 3 cm rea 0 0
motorSpeed (motorSpeedType) motorSpeedType 1 mis rea 0 35
[z] motorSpeedType double 1 = rea 0 35
~ & coordinates
X double 1 cm rea 0
double 1 cm rea 0 100
z double 1 cm rea 0 100
~ & GPSdata
timestamp double = rea] 1l
sensordata
location doublo real 1] 1l

Inspect Properties... | motorSpeedType

The nested data interface displays the inherited data elements.

3-8

Create Interfaces

Type Dimensions Units Complexity Minimum Maximum
~ & @GPSdata
timestamp double 1 real 1 I
* location (coordinates) coordinates 1 real 1] 1
X double 1 cm real 0 100
¥ double 1 cm real 0 100
z double 1 cm real 0 100

Note To change the number of columns that display in the Interface Editor, click the E“Y‘ icon.
Select or clear the desired columns to show or hide them.

Interfaces R
g el & ~al- ﬂ$T| Search (|| Dictionary View -
SHOW HIDE COLUMNS
Type & Inits
| Type

~ @ exMobileRobot slx 7 Dimensions

» & sensordata

v Units
[&] motorSpeedType | double _ m/'s
Complexity
» & coordinates
Minimum
} & GPSdata
Mazximum
Description
See Also
Functions
addInterface | removeInterface | addElement | removeElement | connect | setInterface |
addValueType
Blocks
Component
More About
. “Assign Interfaces to Ports” on page 3-10
. “Interface Adapter” on page 3-16
. “Manage Interfaces with Data Dictionaries” on page 3-20

. “Specify Physical Interfaces on Ports” on page 5-76
. “Modeling System Architecture of Small UAV” on page 1-32

3-9

3 Interface Management

Assign Interfaces to Ports

3-10

In this section...

“Mobile Robot Architecture Model with Interfaces” on page 3-10
“Associate Ports with Interfaces in Property Inspector” on page 3-10
“Define Owned Interfaces Local to Ports” on page 3-11

“Select Multiple Ports and Assign Data Interface” on page 3-13

“Specify Source Element or Destination Element for Ports” on page 3-14

A port interface describes the data that can be passed between ports in a System Composer
architecture model. Data elements within the interface describe characteristics of the data
transmitted across the interface. Data elements can describe the composition of a data interface,
messages transmitted, or data structures shared between components. For interfaces terminology,
see “Define Port Interfaces Between Components” on page 3-2.

This topic will show you how to:

» Use the Property Inspector to assign data interfaces to one port at a time or the Interface Editor
to assign data interfaces to multiple ports.

+ Manage owned interfaces that are local to a port and not shared in a data dictionary.

* Assign interfaces to multiple ports at the same time.

* Connect components through ports and specify the source element or the destination element for
the connection.

Incompatible data interfaces on either end of a connection can be reconciled with an Adapter block
using the “Interface Adapter” on page 3-16. To manage interfaces shared between models in data
dictionaries, see “Manage Interfaces with Data Dictionaries” on page 3-20. For information on
physical interfaces, see “Specify Physical Interfaces on Ports” on page 5-76.

Mobile Robot Architecture Model with Interfaces

This example shows a mobile robot hardware architecture with interfaces defined.

Associate Ports with Interfaces in Property Inspector

To assign data interfaces or value types to one port at a time, use the Property Inspector. To open the
Property Inspector, navigate to Modeling > Design > Property Inspector. To show the
SensorData port properties, select the port in the model. Expand Interface, and from the Name
list, select sensordata to associate the sensordata interface with the SensorData port.

Assign Interfaces to Ports

Property Inspector (¥
Port

Architecture Irific

~ Main
Mame SensorData
~ Interface
Mame Create or Selact . e
Actior data
Open in Interface Editor mntc-rSpEEde,'pE
coordinates
Stereotype GPSdata
<owned =
<empty=>

Define Owned Interfaces Local to Ports

You can select a value type or data interface from the model data dictionary in the Property Inspector,
or you can create an owned interface.

An owned interface is an interface that is local to a specific port and not shared in a data dictionary
or the model dictionary.

Create an owned interface to represent a value type or data interface that is local to a port.

Note Owned interfaces and value types do not have their own names because they are local to a port
and not shared. The name of the owned interface is derived from the port name.

Manage Owned Interfaces Using Property Inspector

You can edit the data for the owned interface in the Property Inspector. Select the Docking
architecture port. In the Property Inspector, under Interface, from the Name list, select <owned>.

3-11

3 Interface Management

Property Inspector (*)
Port
Architecture Info
¥ Main
Name Docking
v Interface
Mame Create or Select ... ~
Action GPSdata
S i Interf coordinates
pen in Interface... R LTy e
Stereotype 'sensordata
 <owned >
<empty:>

By default, the owned interface Docking becomes an owned value type. Edit interface attributes
directly in the Property Inspector, or select Open in Interface Editor to edit the owned value

type interface.

Interfaces

& Docking

|

Type

double 1

Search

(|| Port Interface View -

Dimensions

Units

To convert the owned value type into an owned data interface, click “Z to add a data element.

Manage Owned Interfaces Using Interface Editor

You can also work exclusively from the Interface Editor. Select the component port named
Feedback. In the Interface Editor, change from Dictionary Viewto Port Interface View.

Interfaces

S~

b i exMobileRobot slx

Be ~

Type

Search

Dimensions

P x

- |

(|| Dictionary View

Dictionary View
Fort Interface View M

3-12

Click ¥ to add data elements to the owned data interface.

Assign Interfaces to Ports

Interfaces
& e |d& (e~ Bs.| v || Search Q| Port Interface View ~
Type Dimensions Units
+ 'O Feedback |
ComputedSignal double
Userinput double

To convert the owned data interface to an owned value type, change the Type for Feedback to a valid
MATLAB data type, such as double.

Make Owned Interfaces into Shared Interfaces

To convert an owned interface into a shared interface, right-click the port with the owned interface
and select Convert to shared interface. Alternatively, use the makeOwnedInterfaceShared
function.

Select Multiple Ports and Assign Data Interface

Multiple ports, whether they are connected or not, can use the same data interface definition. When
you assign a data interface to a port, the interface is automatically propagated to connected ports,
provided they do not already have assignments. To simplify batch assignments, select multiple ports,
right-click the data interface, and select Assign to Selected Port(s).

Highlight the ports that use a data interface definition by clicking the interface name in the
Interface Editor.

3-13

3 Interface Management

¢+ & coordinates

exMobileRobot [T
® |F2exMobileRabot P
@ | exMobileRobot
E3
=
D Communication Command Sansor
E f[; SengorData F:e_-:ll:-ack i |—dfiFeadback SensorData -ED - p
\. R - P> ImBis S&nsorData [:)
F=Y Fay
4 4 A
Dacking E ? E Feedback[H{ >
g
Battery Motor
Ul
CutBus [» [ImBus MotionData [:)
» | Heh
Interfaces L
= v- &~ - [Bs |~ || Searen Q[Dictionary View -
Type Dimensions Units
~ @ exMobileRobot slx
| ~ & sensordata
coordinates double cm
motorSpeed (motorSpeedType) | motorSpeedType mi's
[:] motorSpeedType double mis
b = GPSdata

Specify Source Element or Destination Element for Ports

For connections between the root architecture and a component within the architecture model, you
can add a source element or destination element to the ports.

1 Create a component called Motor and connect it to the root architecture with ports named

MotionData and SpeedData.

Define the data interface Wheel with the data elements RotationSpeed and MaxSpeed.
Assign the Wheel data interface to the ports on the connection.

3-14

Assign Interfaces to Ports

4 Select the MotionData port name on the component. A dot and a list of data elements appear.
From the list, select the source element RotationSpeed.

5 Assign the MaxSpeed destination element to the SpeedData port.

exMobileRobot s
® |2 exMobileRobot hd
© | exMobileRobot
i~ Ml SpeedData MotionData [[
E SpeedData . MaxSpeed MotionData |)—4MotionData . RotationSpeed
— =
[Biaf
Interfaces P X
S~ | |& |- Bg.|~ || Search Q|| Dictionary View -

Type Dimensions Units

~ & exMobileRobof six

v & Wheel
RotationSpeed double mis
MaxSpeed double mis
See Also
Functions

connect | getDestinationElement | getSourceElement | createOwnedType |

createlInterface | makeOwnedInterfaceShared

Blocks
Component

More About

. “Create Interfaces” on page 3-5

. “Manage Interfaces with Data Dictionaries” on page 3-20

. “Interface Adapter” on page 3-16

. “Specify Physical Interfaces on Ports” on page 5-76
. “Modeling System Architecture of Small UAV” on page 1-32

3-15

3 Interface Management

Interface Adapter

A source port and its destination port may be defined by different data interfaces. Such a connection
can represent an intermediate point in design, where components from different sources come
together. To connect components with different data interfaces, use an Adapter block and the
Interface Adapter. For interfaces terminology, see “Define Port Interfaces Between Components” on
page 3-2.

An adapter helps connect two components with incompatible port interfaces by mapping between the
two interfaces. Use the Adapter block to implement an adapter. Open the Interface Adapter by
double-clicking an Adapter block on the connection between the ports.

Use the Interface Adapter in System Composer™ to map interface elements between two ports. You
can also use the Interface Adapter to apply an interface conversion that breaks algebraic loops with
unit delays, or insert a rate transition for different sample time rates. When output interfaces are
undefined, you can use input interfaces in bus creation mode of the Interface Adapter to author
owned output interfaces.

Map Incompatible Interfaces

When two connected components with Simulink® behaviors have incompatible interfaces, use an
Adapter block and the Interface Adapter to define the port connections.

Add an Adapter block on the connection between the two components.

Double-click the block to open the Interface Adapter dialog box.

In the Select input box, select a data element. In the Select output box, select a data element.
Click the Map and Overwrite button.

D W N R

exMobileRobotinterfaces

] qur«'.oh leRobotinterfaces b

@ %
" exMobileRobotInterfaces
[
=
—
@ Communication Command Sensor
E B Edit Interface Mappings : Interface Adapter - [m] x
Create and edit mappings between input and cutput Interfaces. 5> InBis SensorData b
B3 | Mappings Create new mapping
_ Apply interface conversion: None e Select input Select output A
MotorData ~ MotionDat =
et Outpat otorDat 0;0'1 ata =
c
1 MotorData MotionData y -%
Map and z =
Cwer[glte
2 MotorData |~ MoticnData
- "MotorData’ mapped to
— Remove ‘MotionData'
M-
b3 Cancel Help Apply

3-16

Interface Adapter

You can use an Adapter block to map similar interfaces for an N: 1 connection, which is an Adapter
with more than one input port and a single output port. A data element from each input connection

maps to the output connection data elements.

Change the number of input ports on an Adapter block in the same way you add and remove
component ports. For more information, see “Compose Architecture Visually” on page 1-2.

exMobisfobotintenaces

@ |[F]exmobileRobotinterfaces ¥

@

|

exMobileRobotinterfaces

B¢ Edit Interface Mappings : Interface Adapter

Create and edit mappings between input and output interfaces, Sensor
Mappings {unsaved changes ***) Create new mapping
Apply interface conversion: | None = Select input Select output < b Serisor SensorData b
Mator ¥ Sensor o
- R
Input Dutput v Command coordinates Commgnd Sepsor
1 Motor Sensor.matorSpeed timestamgp motorSpesd 5 A
¥ location E 2
- 2 2
¥ Map a5 [a]
) {5 2 2
¥ E g
.y =
Motor
Reernovi + Command MotionData >
conce | [v | | onh
| ik

Use Unit Delay to Break Algebraic Loop

When connecting two components with port connections in both directions, an algebraic loop can
occur. To break the algebraic loop, use an Adapter block to insert a unit delay between the

components.

1 Add an Adapter block on the connection between the two components.

2 Double-click the block to open the Interface Adapter dialog box.

3 From the Apply interface conversion list, select UnitDelay.

Use Rate Transition Between Simulink Behaviors

When connecting two reference components, the Simulink models the components reference can
have different sample time rates. For compatibility, use an Adapter block to insert a rate transition

between the components.

1 Add an Adapter block on the connection between the two components.

2 Double-click the block to open the Interface Adapter dialog box.

3 From the Apply interface conversion list, select RateTransition.

Use Bus Creation Mode to Author Owned Interfaces

When input ports for an Adapter block are typed by interfaces from incoming connections and no
interfaces are defined on the output ports of the Adapter, you can use these interface elements to

3-17

3 Interface Management

author owned interfaces for outgoing connections. Instead of pre-defining interface structures, you
can create the bus structure.

Double-click the Adapter block to open the Interface Adapter dialog in bus creation mode. Click the

=

button to add an input data interface, data element, or value type to the output port interface.

B Edit Interface Mappings : Interface Adapter

Create and edit mappings between input and output interfaces.

Mappings

Apply interface conversion: | None

Input

1 Needle.Displacement

Output

Signal.Displacement

Remove

Create new mapping

- [m] x

Search Inputs

Search Outputs

Select input
V¥ Needle
+ Displacement
* Rotor
Torque
Speed

Select output
~ Signal
+ Displacement

dd selected input to output port interface.

Cancel Help

Click the 2@ button to remove an output data interface, data element, or value type from the output

port interface.

B Edit Interface Mappings : Interface Adapter

Create and edit mappings between input and output interfaces.

Mappings

Apply interface conversion: | None

Input
1 Needle.Displacement
2 Rotor.Torque

Qutput
Signal.Displacement
Signal.Torque

Remove

- [m| X
Create new mapping
Search Inputs Search Outputs
Select input Select output

¥ Needle ¥ Signal

+" Displacement + Displacement
v Rotor + Torque

¥ Torque

Speed @‘

Remove selected output from cutput port interface.

'Rotor.Torque’ mapped to
'Signal.Torque”

'Signal.Displacement’ mapped to
'Needle.Displacement’

Cancel Help

Click OK to apply the changes.

3-18

Interface Adapter

SewingMachine ricics) Property Inspector @ x
@® | sewingMachine ¥ ¥ | | Port
Architecture Info
ik SewingMachine
FH| ¥ Main
. Mame Signal
[v Interface
Sensor
Mame <owned> -

D A 0 DUTPUT
o Needia [Open in Interface Editor edit ...
Controller P

Neadle gt :"'Signal [Signal

Rotor

Motor

[

D Rotor [=

T

LERETEN

Interfaces @ x

[-]l - | B - [[Searcn Q

 Port Interface View - |

~ O Signal

Displacemeant
Torque

The owned interface on the output port of the Adapter block propagates to the connected input port
Signal on the Controller component.

To convert an owned interface into a shared interface, right-click the port with the owned interface
and select Convert to shared interface.

See Also

Blocks
Adapter | makeOwnedInterfaceShared

More About

. “Create Interfaces” on page 3-5

. “Assign Interfaces to Ports” on page 3-10

. “Manage Interfaces with Data Dictionaries” on page 3-20
. “Define Port Interfaces Between Components” on page 3-2
. “Merge Message Lines Using Adapter Block” on page 8-32

3-19

3 Interface Management

Manage Interfaces with Data Dictionaries

In this section...

“Mobile Robot Architecture Model with Interfaces” on page 3-20
“Save, Link, and Delete Interfaces” on page 3-20

Engineering systems often share interface definitions across multiple components or subsystems.

Data interfaces in System Composer can be stored either locally in a model or in a data dictionary,
depending on the maturity of your system. For interfaces terminology, see “Define Port Interfaces

Between Components” on page 3-2.

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. Interface dictionaries can be reused between models that need to use a given set
of interfaces, elements, and value types. Data dictionaries are stored in separate SLDD files.

For more advanced dictionary referencing techniques, see “Reference Data Dictionaries” on page 3-
23.

Mobile Robot Architecture Model with Interfaces

This example shows a mobile robot hardware architecture with interfaces defined.

Save, Link, and Delete Interfaces

By default, interfaces are stored within the architecture model and are not visible outside the model.
If you are in the initial stages of building a system model, store interfaces locally to limit the number
of files that need to be managed. However, if your model is mature to the point of leveraging
componentization workflows like reference architectures and behaviors, storing interfaces in a data
dictionary gives you the ability to share interface definitions across the model hierarchy.

= . - .
Use the =4 menu to save a data interface to a new or existing data dictionary. To create a new data
dictionary, select Save to new dictionary. Provide a dictionary name.

Interfaces P X
=R | | ~|gdl~ ||| || ~||Es| || Search (|| Dictionary View -
Type Dimensions Units
* [robotinterfaces sldd
» & sensordata
] motorSpeedType double 1 m/'s

} & GPSdata
» & coordinates

3-20

Manage Interfaces with Data Dictionaries

You can also add the interface definitions in the model to an existing data dictionary by selecting
Link existing dictionary.

Use the ¥ button to import interface definitions from a Simulink bus object, either from a MAT-file or
the workspace.

Delete a data interface from a dictionary using the &S| button. If the data interface is already being
used by ports in a currently open model, the software returns a warning message. The data interface
is then removed from any ports in the open model that are associated with the data interface.

If a data interface is deleted from a dictionary upon opening another model that shares the dictionary,
a warning will be presented on startup if the deleted interface is used by ports in that model. The
Diagnostic Viewer offers an option to remove the deleted interface from all ports that are still using
it. You can also select ports individually and delete their missing interfaces.

Interfaces L
& ~ |5 @ | & g ~| 8| & ~||Es| ~||Search Y| Dictionary View -
Type Dimensions Units

v tﬁ' robotinterfaces. sidd

» & sensordata

4 Confirm delete interface - b
1] motorSpeedType d

= T
' ':'E GPSdata Are you sure you want to delete interface: "sensordata™?
b é coordinates ___ Tr!s Wllll remove interface fromall ports associated with that interface.
This action cannot be undone.

Yes, delete interface MNio Help

A System Composer model and a data dictionary are separate artifacts. Even when the data
dictionary is linked to the model, changes to the data dictionary (a .sldd file) must be saved
separately from changes to the model (a . sx file). To save changes to a linked data dictionary, use

the = button and select Save dictionary. Once a data dictionary is saved, other models can use
its interface definitions by linking to the data dictionary, allowing multiple models to share the same
interface definitions.

See Also

createDictionary | openDictionary | saveToDictionary | linkDictionary |
unlinkDictionary | makeOwnedInterfaceShared

More About
. “Create Interfaces” on page 3-5
. “Assign Interfaces to Ports” on page 3-10

. “Interface Adapter” on page 3-16

3-21

3 Interface Management

. “Reference Data Dictionaries” on page 3-23
. “Specify Physical Interfaces on Ports” on page 5-76

3-22

Reference Data Dictionaries

Reference Data Dictionaries

In this section...

“Add Referenced Data Dictionaries” on page 3-23
“Use Referenced Data Dictionaries for Projects with Multiple Models” on page 3-24

Referenced dictionaries in System Composer may be useful when multiple models need to share
some, but not all, interface definitions. and to allow communication between the models. A data
dictionary can reference one or more other data dictionaries. The interface definitions in the
referenced dictionaries are visible in the parent dictionary and can be used by a model that is linked
to the parent dictionary. For interfaces terminology, see “Define Port Interfaces Between
Components” on page 3-2.

To create a data dictionary from interfaces in a model dictionary, see “Manage Interfaces with Data
Dictionaries” on page 3-20.

Add Referenced Data Dictionaries

To add a dictionary reference, open the Model Explorer by clicking Fa, or by navigating to Modeling
> Design > Model Explorer.

On the right side of the Model Explorer window, click Add, then select the file name of the data
dictionary to add as a referenced dictionary. To remove a dictionary reference, highlight the
referenced dictionary, then click Remove.

B O

Model Hierarchy

D

El = E Contents of: .. ictionary 'D:\Examples\myDictionary.sldd' (only)

Data Dictionary: myDictionary

~ P Simulink Root

Column View: | Dictionary Objects ¥ | Show Details D object(s) ﬂ‘ Information for: myDictionary
Base Workspace N
L e .“. e File: D:\Examples\myDictionary.sldd
& mypictionany” Created: 2020-12-22 08:15
exMobileRobat Last Modified: 2020-12-22 08:16

Last Saved: 2020-12-22 08:15
Unsaved Changes: yes (ShowChanges)

£ >

Referenced Dicticnaries

miyDictionary Add
otherDictionary (4) View Hierarchy
Remove

Open

|:| Enable dictionary access to base workspace

Help

> Contents Search Results

3-23

3 Interface Management

The Interface Editor shows all interfaces accessible to a model, grouped based on their data
dictionary files. In this example, myDictionary. sldd is the data dictionary linked to the model, and
otherDictionary.sldd is a referenced dictionary.

Type Dimensions Units Complexity Minimum Maximum Description

~ i@ myDictionary sldd
& Feedback
& MotionData
& sensorData

~ |g otherDictionary sldd
& Docking
& Otherinteriace

& Ctherinterface2

The model can use any of the interfaces listed. However, you cannot modify the contents of the
referenced dictionaries from the model.

Note Referenced dictionaries can reference other data dictionaries. A model that links to a
dictionary has access to all interface definitions in referenced dictionaries, including indirectly
referenced dictionaries.

Use Referenced Data Dictionaries for Projects with Multiple Models

A project may contain multiple models, and it may be useful for the models to share interface
definitions that are relevant to data flows and other communications between models. For more
information, see “Organize System Composer Files in Projects” on page 10-2,

At the same time, each model may have interface definitions that are relevant only to its internal
operations. For example, different components of a system may be represented by different models,
with different teams or different suppliers working on each model, with a system integrator working
on the "top" model that incorporates the various components. Referenced data dictionaries provide a
way for models to share some but not all interface definitions.

In such a multiple-team project, set up a "shared artifacts" data dictionary to store interface
definitions that will be shared by different teams, then set up a data dictionary for each model within
the project to store its own interface definitions. Each data dictionary can then add the shared data
dictionary as a referenced data dictionary. Alternatively, if a model does not need its own interface
definitions, that model can link directly to the shared data dictionary.

3-24

Reference Data Dictionaries

mSystem.slx
Simulink Model

S

mSupplierA skx mSupplierB slx
Simulink Model Simulink Model
- O O

dSystem sldd dSupplierA.sldd
Simulink Data Dictionary Simulink Data Dictionary
W WS

Simulink Data Dictionary

dahared.sldd ‘

The above diagram depicts a project with three models. The model mSystem. s1x represents a
system integration model, and mSupplierA.slx and mSuppierB.slx represent supplier models.
The data dictionary dShared. sldd contains interface definitions shared by all the models. The
system integration model is linked to the data dictionary dSystem. sldd, and the Supplier A model is
linked to the data dictionary dSupplierA.sldd; each data dictionary contains interface definitions
relevant to the corresponding model's internal workflow. The data dictionaries dSystem. sldd and
dSupplierA.sldd both reference the shared dictionary dShared.sldd. The Supplier B model, by
contrast, is linked directly to the shared dictionary dShared. sldd. In this way, all three models have
access to the interface definitions in dShared. sldd.

The following diagrams show the system integration model mSystem, along with the Interface
Editor. Interface definitions contained in the referenced dictionary dShared are associated with the
ports used to communicate between the models mSupplierA and mSupplierB and the rest of the
system integration model.

3-25

3 Interface Management

mSystem Jrisd]

® (F]msystem #

mSystem

supplierd
supplierA CLETELiS
< mEupplierh, >

roatOEMOuUL b —drootOEMCu
aSuppl b fromSuppienh

o
rectOEMini—{ b roctOEMIn IoProcessirda |

G e N |

taPracessinfo b

b ireotOE MIn rootOEMOut 1

O B @

procinfa

b FomSuppiE

b fromSupnis

« ||Ed&h

Interfaces L
& - & - @3] [&]-][Es]-][searcn Q| ictionary view -

Type Dimensions Units Complexity Minimum Maximum Description

| & dSystem sidd |

~ [@ dShared sidd
& rootCommsin
& rootCommsQut
& supplAProcinfo
é supplBProcinfo
& supplSharedComms

The following diagrams show the supplier model mSupplierA, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports
used to communicate externally, while interface definitions in the private dictionary dSupplierA are
associated with ports whose use is internal to the mSupplierA model.

3-26

Reference Data Dictionaries

<4 “r supplierd]
mS‘,fstem L4 supplierA {mSuppliera) ¥ A
@ | mSupplierA
PP
3
D cB
chA
toSupplB I+ >
to_cB b b from_cA oSupplE b —4@ioSupplB
& -:c-.tEer.—(b rootOEMIn
to_cC b
WIDEMIH
] .
cC
toProcessinfol B
b from_cA toProcessinfo b —dltoProcessinfo
i
« | @b
Interfaces o
- e ||£ '”@I v| |@ v||ﬁ@> v||Search L.{|| Dictionary View - |
Type Dimensions Units Complexity Minimum Maximum Description
& dSystem.sldd
~ @ dShared sidd

é rootCommsin

& rootCommsQut
& supplAProcinfo
& supplBProcinfo
& supplSharedComms

See Also
addReference | removeReference

More About

. “Create Interfaces” on page 3-5
. “Assign Interfaces to Ports” on page 3-10

. “Manage Interfaces with Data Dictionaries” on page 3-20

. “Specify Physical Interfaces on Ports” on page 5-76

3-27

3 Interface Management

. “Organize System Composer Files in Projects” on page 10-2

3-28

Define Architectural Properties

* “Define Profiles and Stereotypes” on page 4-2

» “Use Stereotypes and Profiles” on page 4-10

* “Simulate Mobile Robot with System Composer Workflow” on page 4-22
* “Organize and Link Requirements” on page 4-24

* “Design Architecture Models” on page 4-27

* “Define Stereotypes and Perform Analysis” on page 4-34

* “Simulate Architectural Behavior” on page 4-43

4 Define Architectural Properties

Define Profiles and Stereotypes

4-2

To verify structural and functional requirements, you must capture nonfunctional properties on
elements in a System Composer architecture model. To capture these properties, use stereotyping.

For example, if there is a limit on the total power consumption of a system, the model must be able to
capture the power rating of each electrical component. To define component-specific property values
requires extending built-in model element types with properties corresponding to requirements. In
this case, an electrical component type as an extension of components is a stereotype. By extending
the definition of regular components, you introduce a custom modeling language and framework that
includes specific concepts and terminologies important for the architecture model. Capturing the
individual properties also sets the scene for early parametric analyses and to define custom views.

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata.

Apply stereotypes to model elements such as root-level architecture, component architecture,
connectors, ports, data interfaces, value types, and functions. Functions only apply to software
architectures. A model element can have multiple stereotypes. Stereotypes provide model elements
with a common set of property fields, such as mass, cost, and power.

A property is a field in a stereotype. You can specify property values for each element to which the
stereotype is applied.

Use properties to store quantitative characteristics, such as weight or speed, that are associated with
a model element. Properties can also be descriptive or represent a status. You can view and edit the
properties of each element in the architecture model using the Property Inspector.

Open the Property Inspector by navigating to Modeling > Property Inspector.
A profile is a package of stereotypes to create a self-consistent domain of element types.

Author profiles and apply profiles to a model using the Profile Editor. You can store stereotypes for a
project in one profile or in several. When you save profiles, they are stored in XML files.

In this topic, you will learn how to:

Create a profile and define stereotypes with properties.

2 Define default stereotypes in a profile to be added to any new element in a model with that
applied profile.

3 Use stereotype-based styling that enhances the appearance of the model based upon specific
features each element represents.

Create a Profile and Add Stereotypes

Create a profile to define a set of component, port, and connection types to be used in an architecture
model. For example, a profile for an electromechanical system, such as a robot, could consist of these

types.

* Component types

* Electrical component

Define Profiles and Stereotypes

* Mechanical component
* Software component
* Connection types

* Analog signal connection
* Data connection
* Port types

* Data port

Define a profile using the Profile Editor by navigating to Modeling > Profile Editor. Click New
Profile. Select the new profile to start editing.

[Z] System Composer Profile Editor

Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models. show more...

Profile |_',{'J,New Profile '__j{)pen i Save |« 2;3 Stereotype E% Mew Stereotype 2;3 Import into | Select |« l::-’)

Profile Browser Profile Properties

Filter profiles: |<all> - Name: | Praofile |

Friendly name (can contain spaces etc.):
& Profile* | |

Stereotype applied to root on import: | none -

Description:

e A WAV W W RN NNV

Name the profile and provide a description. Add stereotypes by clicking New Stereotype. You can

a
delete stereotypes and profiles by clicking the 2’5 button in their respective menus.

Save the profile. The file name is the same as the profile name.

Add Properties with Stereotypes
Select a stereotype in a profile to define it:

* Name — The name of the stereotype, for example, ElectricalComponent.

* Applies to — The model element type to which the stereotype applies. This option can be <all>,
Component, Port, Connector, Interface, or Function. You can apply this stereotype only to a
model element of this type. The model element type Function is only available for software

4-3

4 Define Architectural Properties

architecture models. For more information, see “Apply Stereotypes to Functions of Software
Architectures” on page 8-29.

* Icon — Icon to be shown on the model element with color, if applicable.
Connector Style — Line style of the connector to be shown on the model with color, if applicable.
Base stereotype — Other stereotype on which this stereotype is based. This option can be empty.

Abstract stereotype — A stereotype that is not intended to be applied directly to a model
element. You can use abstract stereotypes only as the base stereotype for other stereotypes.

Add properties to a stereotype using the 9F button. Define these fields for each property:

* Property name — Valid variable name

* Type — Numeric, string, or enumeration data type

* Name — Name of the enumerated type, if applicable
* Unit — Value units as a string

* Default — Default value

| =] System Composer Profile Editor

- O X
=] System Composer Profile Editor
Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models. show more...
Profile EE New Profile .—'j] Open | | |gl Save |v Stereotype EE} New Stereotype 23 Import into | Select @
Profile Browser Stereotype Properties
Filter profiles: | <all> - Mame: |5igna|p0,t |
Applies to: | Port -
~ =l ProjectProfile
AnalogConnection Connector style: |— | <
> DataPort
ik ElectricalComponent Base stereotype: | <nothing> -
e‘: MechanicalComponent
O ProjectComponent L] Abstract stereotype
o
Szl Description: |
o
Property name Type Name Unit Default

[show inherited properties (read-only)

Saved profile: 'ProjectProfile’

4-4

Define Profiles and Stereotypes

Add, delete, and reorder properties using the property toolstrip: W] (R eV

You can create a stereotype that applies to all model element types by setting the Applies to field to

<all>. With these stereotypes, you can add properties to elements regardless of whether they are
components, ports, connectors, or interfaces.

Stereotype Properties

Name: |Genera|EIement

Applies to: | <all>

Base stereotype: | <nothing=>

] Abstract stereotype

Description: |

i

Property name Type Mame Unit Default
1 RefNumber int8 * [nfa

Define Default Stereotypes

Each profile can have a set of default stereotypes. Use default stereotypes when each new element of
a certain type must assume the same stereotype. System Composer applies a default stereotype to
the root architecture when you import the profile. You can set this default as ProjectComponent in
the Profile Editor using the Stereotype applied to root on import field.

4 Define Architectural Properties

(=] System Composer Profile Editor — O *

= System Composer Profile Editor

Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models. show more...
Profile [El, New Profile '_j Open | | |5l Save |« % Stereotype EE} New Stereotype 2‘3 Import into | Select @
Profile Browser Profile Properties

Filter profiles: | <all> - Name: |ProjectF‘roﬁIe |

Friendly name (can contain spaces efc.):

v [& ProjectProfile | |

AnalogConnection . .
b DataPort Stereotype applied to root on import: [none -

i none
EE EIectrlr:aI.Component Description: EestrcalComponent _
@5 MechanicalComponent Mochanicalcoroe o
O ProjectComponent ProjectComponent
B SignalPort

This default stereotype is for the top-level architecture. If a model imports multiple profiles, the
default component stereotype for all profiles apply to the architecture.

Each component stereotype can also have defaults for the components, ports, and connections added
to its architecture. For example, if you want all new connections in a project component to be analog
connections, set AnalogConnection as a default stereotype for the ProjectComponent stereotype.

4-6

Define Profiles and Stereotypes

| =l System Composer Profile Editor

=] System Composer Profile Editor

Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models.

Profile EEL New Profile —'j] Open | | |o Save =

Profile Browser

Filter profiles: | <all> -

v = ProjectProfile
AnalogConnection
P DataPort
{E ElectricalComponent
o% MechanicalComponent
O ProjectComponent
> SignalPort

Saved profile: 'ProjectProfile’

- O *
show more...
Stereotype EE} New Stereotype 23 Import into | Select @
Stereotype Properties
Name: |ProjectComponent |
Applies to: Component O 1con &
Base stereotype: | <nothing> A
[] Abstract stereotype
Description: |
¥ Default Stereotypes for Composition
Component stereotype: | ElectricalComponent
Port stereotype: | SignalPort
Connector stereotype: | AnalogConnection
Property name Type Name Unit Default

1 PowerRating string * [n/a n/a

[show inherited properties (read-only)

When you import the profile ProjectProfile into a model:

* The ProjectComponent stereotype is automatically applied to the root architecture.

* The ElectricalComponent stereotype is automatically applied to all new components in the

architecture model.

* The SignalPort stereotype is automatically applied to all new ports.

* The AnalogConnection stereotype is automatically applied to all new connections.

Use Stereotype-Based Styling

Profiles and stereotypes are used to apply custom metadata on the architecture model elements.
Element styling is an additional visual cue that indicates applied stereotypes.

4 Define Architectural Properties

You can use provided icons for the component stereotypes or use you own custom icon images.
Custom icons support .png, . jpeg, or .svg image files of size 16-by-16 pixels. The custom icons are
displayed as badges on the components for which the stereotypes are applied.

Pick an icon
O B =
L &
T < e
€2 & 9

Custom

Accepted icon size: 16x16 pixels

You can associate a color with component stereotypes. Element styling is an additional visual cue that
indicates applied stereotypes.

| = System Composer Profile Editor — O X
- - ~

(=] System Composer Profile Editor

Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models. show more...

Profile | 7L New Profile | |Open [olSave v Stereotype s New Stereotype & Importinto | Select v)

Profile Browser Stereotype Properties

Filter profiles: | <all> M Name: ‘Stereotype ‘
Applies to: Component - g Icon]

v [=] Profile*
g Stereotype Base stereotype: |<nothing> -

Use a preconfigured set of color options for component stereotypes to style the architecture
component headers. See “Use Stereotypes and Profiles” on page 4-10 to learn how to use
stereotypes in your model.

-
ComponentA = ComponentB Ebﬁ
)] <vdp =
.C‘rul'l =3
Out2

Similarly, you can style architecture connectors using the stereotype settings. You can style
connectors by using connector, port, or port interface stereotypes. Customize styling provides various
color and line style choices. Connector styles are also reflected in architecture and spotlight views.

4-8

Define Profiles and Stereotypes

Stereotype Properties

Name: [Stereotype

Applies to: Connector =
Connector style: ==+ | 1

Base stereotype: <nothing> -

[Abstract stereotype

Description: |

Connector styling is sourced from the highest-priority stereotype that defines style information.
Connector stereotypes have the highest priority, followed by port stereotypes and then interface
stereotypes.

When two connectors with different styling merge, if the styling is incompatible, the resulting
connector is displayed in black.

ComponentB
[> InBus
7ComponentA
OutBus p ————o
ComponentC
> InBus

See Also
hasStereotype | hasProperty | editor | systemcomposer.profile.Profile |
systemcomposer.profile.Property | systemcomposer.profile.Stereotype

More About

. “Use Stereotypes and Profiles” on page 4-10
. “Analyze Architecture” on page 7-2

. “Analysis Function Constructs” on page 7-9

. “Modeling System Architecture of Small UAV” on page 1-32
. “Simulate Mobile Robot with System Composer Workflow” on page 4-22

4-9

4 Define Architectural Properties

Use Stereotypes and Profiles

4-10

Use profiles to add properties to components, ports, and connectors in System Composer. Import an
existing profile, apply stereotypes, and add property values. To create a profile, see “Define Profiles
and Stereotypes” on page 4-2.

In this topic, you will learn how to:

Import profiles into a model or a dictionary.
Apply a stereotype to a model element and add property values.
Remove stereotypes using the Property Inspector.

A W N R

Extend stereotypes with other stereotypes to include their properties through an inherited
mechanism. For example, a UserInterface stereotype can be an extension of a
SoftwareComponent stereotype, and add a property called ScreenResolution.

Import Profiles

The Profile Editor is independent from the model that opens it, so you must explicitly import a new
profile into a model. The profile must first be saved with an . xml extension. Navigate to Modeling >

Profiles > Import B . Select the profile to import. An architecture model can use multiple profiles
at once.

Alternatively, open the Profile Editor by navigating to Modeling > Profile Editor. You can import a
profile into any open dictionaries or models.

Use Stereotypes and Profiles

|Z| System Composer Profile Editor

E | System Composer Profile Editor

Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models.

Profile EEL New Profile '_'_=|] Open | | ol Save |» Stereotype E% New Stereotype 23 Import into

Select...
Profile Browser Stereotype Properties
model.sk
Filter profiles: | <all> o Name: |ProjectComponent dictionary.sldd
o Applies to: | Component - O 1con

v [=] ProjectProfile*

AnalogConnection Base stereotype: | <nothing>

= DataPort

{F ElectricalComponent [Abstract stereotype

InterfaceStereotype

Description:
O MechanicalComponent Pt |

ProjectC t
E Sir:]ﬂzlpo?tmponen » Default Stereotypes for Composition

H
Property name Type Name Unit Default E

s

[show inherited properties (read-only)

Note For a System Composer component that is linked to a Simulink behavior model, the profile
must be imported into the Simulink model before applying a stereotype from it to the component.

Since the Property Inspector on the Simulink side does not display stereotypes, this workflow is not
finalized.

To manage profiles after they have been imported, navigate to Modeling > Profiles > Manage

=

ad

4-11

4 Define Architectural Properties

Linked profiles — O *
Impaort or remove profiles.
Mame Linked to
1 ProjectProfile model.slx
2 ProjectProfile dictionary.sldd
lirt, Import 2+ Remove

Apply Stereotypes

Apply stereotypes to architecture model elements using the Property Inspector or the Apply
Stereotypes dialog. You can also quick-insert a new component with the stereotype applied. For
information about applying stereotypes to functions in software architectures, see “Apply Stereotypes
to Functions of Software Architectures” on page 8-29.

Apply a Stereotype using the Property Inspector

Once the profile is available in the model, open the Property Inspector by navigating to Modeling >
Property Inspector. Select a model element.

4-12

Use Stereotypes and Profiles

- RobotWithReqgs Property Inspector o
,% ® |[FRobotwithRegs b *| | port g
g ‘ @ Successfully imported architecture profile "Functional Architecture'. x| * Architecture Info ﬁ
= Q MUUULVVILIIMREYDS E
E3 ~ Main B
Name SensorData
O Sensor L
Trajectory plan s Interface
Sterectype Add.
A\
8
5
w
c
Cl & User Interface
> SensorData
[
=1 etn 1 v
« ¢ 3
Ready 119% VariableStepAuto

In the Stereotype field, use the drop-down to select the stereotype. Only the stereotypes that apply
to the current element type (for example, a port) are available for selection. If no stereotype exists,

you can use the <new / edit> option to open the Profile Editor and create one.

Property Inspector = X
Port
Architecture Info
* Main
MName SensorData
Tags
» Interface
Stereotype Select w
1.F PO .
FunctionalArchitecture. SignalPort
<new J edit=

B N Ll P e R L |

4-13

4 Define Architectural Properties

When you apply a stereotype to an element, a new set of properties appears in the Property Inspector
under the name of the stereotype. To edit the properties, expand this set.

Property Inspector = ¥
Port
Architecture Infi
* Main
MName SensorData
Tags
» Interface
Sterectype Add.. =
 DataPort Select b
BitRate E |
J r “'—r ‘l,_—-" -\..L._..__# . r o J

You can set multiple stereotypes for each element.

'g RobotWithRegs = Property Inspector =
2 | ® [FZrobotwithregs P ¥ || Compenent
% ~ Architecture Info
= @ | RobotWithReqgs
FH * Main
o Mame Sensor
------- : Sterectype Add. hd
e ﬂ » ElectronicComponent Select M
D naar > GeneralElement Select M
> SharedArtifact Select i
v
&
<]
User Interfai
] B+ InBus
b .
€ | ¢ >

4-14

Use Stereotypes and Profiles

Use Apply Stereotypes Dialog to Batch Apply Stereotypes

You can also apply component, port, connector, and interface stereotypes to all applicable elements at
the same architecture level. Navigate to Modeling > Apply Stereotypes. In Apply Stereotypes, from

Apply stereotype(s) to, select Top-level architecture, ALl elements, Components, Ports,
Connectors, or Interfaces.

Note The Interfaces option is only available if interfaces are defined in the Interface Editor. For
more information, see “Create Interfaces” on page 3-5.

Apply Stereotypes — 0 %

Apply stereotypes to selected elements, all elements in the current
layer, or the entire model.

Apply sterectype(s) to: |Top-level architecture -
 Top-level architecture :
Scope: All elements
Components
Include children Pu:rrtEW
Connectors

ProjectProfile.ElectricalC Interfaces

ProjectProfile.MechanicalComponent

ProjectProfile.ProjectComponent

Apply Close Help

You can also apply stereotypes by selecting a single model element. From Scope, select Selection,
This layer, or Entire model.

4-15

4 Define Architectural Properties

Apply Stereotypes — O >

Apply sterectypes to selected elements, all elements in the current
layer, or the entire model.

Apply stereotype(s) to: Components -
Scope: |Selection -
L] Inclu This layer

Project] Entire model N

ProjectProfile.MechanicalComponent

ProjectProfile.ProjectComponent

Apply Close Help

You can also apply stereotypes to data interfaces or value types. When interfaces are locally defined

and you select one or more interfaces in the Interface Editor, the options for Scope are Selection
and Local interfaces.

4-16

Use Stereotypes and Profiles

Apply Stereotypes

layer, or the entire model.

Apply stereotype(s) to: | Interfaces

Apply stereotypes to selected elements, all elements in the current

| X

Scope: | Selection

[}
Inclu Local interfaces

ProjectProfile.InterfaceStereotype

Apply

Close

Help

When interfaces are stored and shared across a data dictionary and you select one or more interfaces
in the Interface Editor, the options for Scope are Selection and either dictionary.sldd or the

name of the dictionary currently in use.

4-17

4 Define Architectural Properties

Apply Sterectypes — O et

Apply stereotypes to selected elements, all elements in the current
layer, or the entire model.

Apply sterectype(s) to: | Interfaces h

Scope: |Selection
| Selection
Inclu 'dictiona

ProjectProfile InterfaceStereotype

Apply Close Help

Note For the stereotypes to display for interfaces in a dictionary, in the Apply Stereotypes dialog box,
the profile must be imported into the dictionary.

Quick-Insert New Component with Stereotype Applied

You can also create a new component with an applied stereotype using the quick-insert menu. Select
the stereotype as a fully qualified name. A component with that stereotype is created.

4-18

Use Stereotypes and Profiles

Component

Systerm Compose

Reference Component

— Component D
Warniant Component 1

Interface Adapter -
Profile.Stereotype %

Create Annotation

Components Actions (Ctrl+.)

Remove Stereotypes

If a stereotype is no longer required for an element, remove it using the Property Inspector. Click
Select next to the stereotype and choose Remove.

Property Inspector ¥ x

Component

Architecture Inificy

Main

MName Sensors
Stereotype Add.. 7
sysComponent | hd

Extend Stereotypes

You can extend a stereotype by creating a new stereotype based on the existing one, allowing you to
control properties in a structural manner. For example, all components in a project may have a part
number, but only electrical components have a power rating, and only electronic components — a
subset of electrical components — have manufacturer information. You can use an abstract
stereotype to serve solely as a base for other stereotypes and not as a stereotype for any architecture
model elements.

4-19

4 Define Architectural Properties

For example, create a new stereotype called ElectronicComponent in the Profile Editor. Select its
base stereotype as FunctionalArchitecture.ElectricalComponent. Define properties you are
adding to those of the base stereotype. Check Show inherited properties at the bottom of the

property list to show the properties of the base stereotype. You can edit only the properties of the
selected stereotype, not the base stereotype.

[=] System Composer Profile Editor

- O X
=] System Composer Profile Editor
Describe architecture profiles, stereotypes and custom property sets for use with System Composer architecture models. show more...
Profile EE New Profile —'j] Open | | ol Save |v Stereotype EE} New Stereotype % Import into | Select |» @

Profile Browser Stereotype Properties

Filter profiles: | <all> A

Name: |EIectr0n|'cComponent

Applies to: Component ﬁ Icon o]
v [=] FunctionalArchitecture*

AnalogConnection Base stereotype: | FunctionalArchitecture.ElecticalComponent -
= DataPort

DigitalConnection [Abstract stereotype

{F ElecticalComponent

ﬁ ElectronicComponent

O MechanicalComponent
b Default Stereo for Composition

> SignalPort types 3

O SoftwareComponent

Description: |

o | &

Property name Type
1 Manufacturer string MILE]
2

Name Unit Default

Pc

owerRating double n/a

Show inherited properties (read-only)

When you apply the new stereotype, it carries its defined properties in addition to those of its base
stereotype.

4-20

Use Stereotypes and Profiles

Property Inspector A X

Component

Architecture Inifiy

* Main
MName Sensor
Tags
Sterectype Add.. hd
* ElectronicComponent Select
Manufacturer
PowerRating 0 VA

e
1

See Also

editor | hasStereotype | hasProperty | systemcomposer.profile.Profile |
systemcomposer.profile.Property | systemcomposer.profile.Stereotype

More About

. “Define Profiles and Stereotypes” on page 4-2

. “Analyze Architecture” on page 7-2

. “Analysis Function Constructs” on page 7-9

. “Apply Stereotypes to Functions of Software Architectures” on page 8-29
. “Simulate Mobile Robot with System Composer Workflow” on page 4-22

4-21

4 Define Architectural Properties

Simulate Mobile Robot with System Composer Workflow

Along with other tools, System Composer™ can help you organize and link requirements, design and
allocate architecture models, analyze the system, and implement the design in Simulink®. Follow this
tutorial for the early phase of development of an autonomous mobile robot.

1 “Organize and Link Requirements” on page 4-24: Set up the requirements based on market
research using Requirements Toolbox™.

2 “Design Architecture Models” on page 4-27: Create architecture models to help organize
algorithms and hardware.

3 “Define Stereotypes and Perform Analysis” on page 4-34: Define stereotypes and perform
system analysis to ensure that the life expectancy of the durable components in the robot meets
the customer-specified mean time before repair.

4 “Simulate Architectural Behavior” on page 4-43: Create a Simulink model to simulate realistic
behavior of the mobile robot.

This workflow is represented by the left side of the model-based systems engineering (MBSE) design
diagram.

4-22

Simulate Mobile Robot with System Composer Workflow

Organize and
Link
Requirements

Complete
Integration
and Test

System Specification

Design
Architectural
Models

System
Integration
and Test

High Level Design

Define
Stereotypes
and Perform
Analysis

Subsystem
Integration
and Test

Simulate
Architectural
Behavior

See Also

More About

. “Model-Based Design with Simulink”
. “Organize System Composer Files in Projects” on page 10-2

4-23

4 Define Architectural Properties

Organize and Link Requirements

4-24

The first step in model-based systems engineering (MBSE) design using System Composer is to set up
requirements. This functionality requires a Requirements Toolbox license.

Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements. This
mobile robot example has three sets of requirements.

1 Stakeholder needs—A set of end-user needs. Stakeholders are interested in attributes of the
mobile robot associated with endurance, payload, speed, autonomy, and reliability.

2 System requirements—A set of requirements that are linked closely with system-level design.
System requirements include the derived requirements that describe how the system responds to
stakeholder needs.

3 Implementation requirements—A set of requirements that specify subsystems in the model.
Implementation requirements include specifications for the battery, structure, propulsion, path
generation, position, controller, and component life for individual subsystems.

By linking one requirement set to another, each high-level requirement can be traced to
implementation. As the MBSE design evolves, you can use iterative requirements analysis to enhance
requirement traceability and coverage. You can use the traceability diagram to visualize requirement
traceability. See “Visualize Links with a Traceability Diagram” (Requirements Toolbox).

Note This example uses Simscape™ blocks. If you do not have a Simscape license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Link Stakeholder Requirements to System Requirements

The mobile robot example includes a functional, logical, and physical architecture that fulfill
stakeholder needs, system requirements, and implementation requirements.

Load these systems in memory to view their requirement links:

* Functional architecture model
» Logical architecture model
» Physical architecture model

systemcomposer.loadModel ("RobotFunctionalArchitecture");
systemcomposer.loadModel("scMobileRobotLogicalArchitecture SS");
systemcomposer.loadModel ("scMobileRobotHardwareArchitecture");

Load these requirement sets into memory:

* Stakeholder needs

* System requirements

* Implementation requirements
slreq.load("scMobileRobotStakeholderNeeds");

slreq.load("scMobileRobotRequirements");
slreq.load("scMobileRobotSubsystemRequirements");

Organize and Link Requirements

Open the Requirements Editor (Requirements Toolbox).

slreq.editor

You can link stakeholder needs to derived requirements to keep track of high-level goals. The Mean
Time Before Repair (MTBR) requirement, STAKEHOLDER-07, is refined by the Battery Life

requirement, SYSTEM-REQ-09.

hd h, scMobileRobotRequirements

El 1 - Endurance
B 2 - Payload and Speed
E 3 - Autonomy
E 4 - Life Expectancy
hd h, scMobileRobotStakeholderMeeds
El 1 STAKEHOLDER-O1 Endurance
E 2 STAKEHOLDER-02 Payload
E 3 STAKEHOLDER-03 Operating Speed
v E 4 - Autonomy
E STAKEHOLDER-D4 Transportation
El STAKEHOLDER-05 Autonomous Charging
E STAKEHOLDER-06 Collision Awvoidance
vEs5 - Reliability
E STAKEHOLDER-07 MTER
El STAKEHOLDER-08 MTBF
hd h, scMobileRobotSubsystemRequirements
E 1 - Battery
E 2 - Structure
E 3 - Propulsicn
B4+ - Path Generation
El s - Position Determination
E s - Controller
E 7 - Component Life

Requirement: STAKEHOLDER-07

Details

¥ Properties

Type: Functional =
Index: 5.1

Custom ID: | STAKEHOLDER-07

Summary: | MTBR

Description Rationale

W [wa o -] z U M

o

The robot should have a Mean Time Before Repair of 2 years.

Keywords:

» Revision information:

¥ Links

E 4= Implemented by:

RobotFunctionalArchitecture

B = Related to:

E SYSTEM-REQ-09 Battery Life -j—
E SYSTEM-REQ-10 Sensor Life

You can set a specific link type. To change link types, in the Requirements Editor (Requirements
Toolbox), select Show Links. For more information, see “Requirement Links” (Requirements

Toolbox).

4-25

4 Define Architectural Properties

Link:
L 5 T Details
v | [i§] scMcbileRobotlogicalArchitecture_SS.simx | Changed source: 0/G Changed destinatior: 0/G ~ Properties
‘9 link #1 Motor Conmroller Impements SYSTEM-REQ-0< Nominal Operating Speed with Pay oad Source: D Plan Path
e” link #4 Trajecory Followe: Impements SYSTEM-REQ-08 Colision Avoidance Type [
{,9 link #5 Trajeciory Followe: Impements SYSTEM-REQ-07 Path Following DesLination: goe:g:'sned By Trmnsportation
& link # Trajerary Gereratnr Impements SYETFM-RFN-NG Selif-1 nealization
& link #3 Trajecory Gererator Impements S¥STCM-RLQ-09 Charging Sation Location Desaription xg’“{:; w0
& link #6 Trajecory Gererator Impements SYSTEM-REQ-06 Path Generation Werifies
v M scMcbileRobotHzrdwarehrchtecture. sims: Changad source: 0/8 Changed destinatior: 0y3
e7 link #5 Battery Impements SYSTEM-RED-01 Batery Capacity
& link #9 Rattery Impements SYSTFM-RFN)-NG Ratery | ife
& link #6 Charge Doard Impements SYSTCMRLQ-02 Dactery Charge Time
‘,9 link #3 Licar Sensar Impements SYSTEM-RE(Q-10 Sensor Life
‘9 link #7 Payload Impements SYSTEM-RED-03 Maximum Payload
e” link #2 RGBE Camera Impements SYSTEM-REQ-10 Sensor Life
& link #17 srbiohleRahotHardwareAr-hitertine Tmpements SYSTFM-RF)-11 Mechanical Compment | ife
& link #8 Wheels Impements SYSTCMRLQ-04 Nominal Operating Speed with Pay oad Keywords:
v | [#] RobetFuncticnalArchitecture simx Changad source: 0/11 Changed destination: 0/11 ¥ Revisivn infurmation ;
e" link #7 Actuate Motors Impements STA{EHOLCER-D3 Operating Spaed } Comments
(,9 link #10 Check Safety Impements STA<EHOLLCER-06 Collison Avoidance
e? link #14 Compate SeIf Prsitinn ITmpements STALFHO MFR-M4 Transporation » Change Information
& link 28 Drve Impements STASCIIOLCCR-03 Operating Sped
a" link #12 Identify Terget Position Impements STA{EHOLCER-05 Autonomaus Charging
é’ link #13 Identify Tzrget Position Impements STACEHOLLCER-04 Transporiation
é link #11 Plan Path Impements STA{EHOLCER-04 Transporation
& link #5 RehatFuncrionalArchitachure Impements STACFHON DFR-11 Frdurance:
& link #6 RobotlsnctionalArchitecture Impements STALCIIOLECR-02 Fayload
e" link #15 RaobotFundtionalArchitecture Impements STACEHOLCER-07 MTBR
& link #16 RobotFundionalArchitecture Impements STA{EHOLCER-08 MTBF
v M scMcbileRobotStakeholderNeeds simx Changzd source: 019 Changed destinatior: 0/19
& link 27 STAKFHOINFR-01 Frrurance Related tn SYSTFM-RF)-N1 Ratery Capacity
a” link #3 STAKDI IOLDCR-01 Cncurance Related to SYSTCM-RCQ-02 Datery Charge Time
(,9 link #4 STAKEHOLDER-02 Payloac Related to SYSTEM-REQ-03 Maximum Payload
e7 link #6 STAKEHOLDER-02 Payloac Related to SYSTEM-REQ-13 Mctor Type
é’ link #8 STAKEHOLDER-03 Operating Speed Related to SYSTEM-REQ-D< Nominal Operating Spead with Pay oad v

To return to interacting with requirements, in the Requirements Editor (Requirements Toolbox),
select Show Requirements. The Transportation stakeholder needs requirement, STAKEHOLDER - 04,
will be implemented by the Localization system requirement, SYST